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ML can transform environmental monitoring by
extracting crucial information from geospatial data

GeoML methods
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Mapping tree canopy height and
its connection to biodiversity.

citizen science

satellites data

ﬁ
mobile phone health/census
data records

Detecting artisanal mining and its
connection to health outcomes.



Combining satellite imagery and machine
learning (SatML) can help researchers and
policymakers monitor our world and act in it.

1000+ carth observation satellites
collect over 90TB data / day.



Combining satellite imagery and machine
learning (SatML) can help researchers and
policymakers monitor our world and act in it.

Environmental monitoring

Article

traoking species populations Change Detection of Deforestation in the Brazilian
maopina built infrastructure Amazon Using Landsat Data and Convolutional
PpIng Neural Networks

biodiversity mapping
Pablo Pozzobon de Bem' ', Osmar Abilio de Carvalho Junior *'*, Renato Fontes Guimaraes'"’ and
Roberto Arnaldo Trancoso Gomes

Figure 4. Example of the change mapping in three locations between (a) 2017 and (b) 2018 and the
respective (c) rasterized deforestation mask.

Figure from de Bem et al., Remote Sensing 2020.



Combining satellite imagery and machine
learning (SatML) can help researchers and
policymakers monitor our world and act in it.
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How Al can actually be helpful in disaster
response . '

Humanitarian teams in Turkey and Syria are using machine learning to quickly
scope out earthquake damage and strategize rescue efforts

By Tate Ryan-Mosley

Disaster response

- estimating damages from natural
disasters with building detection

- finding and prioritizing the most
vulnerable or affected areas

Article: https://www.technologyreview.com/2023/02/20/1068824/ai-
actually-helpful-disaster-response-turkey-syria-earthquake/



Combining satellite imagery and machine
learning (SatML) can help researchers and
policymakers monitor our world and act in it.

Microestimates of wealth for all low- and
middle-income countries
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Guanghua Chi , Han Fang®, Sourav Chatterjee®, and Joshua E. Blumenstock® '
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Fig. 2. Overview of approach. (A) Nationally representative household survey data are obtained from 56 different countries around the world. (8) In
Nigeria, for example, there are 40,680 households surveyed in 899 unique survey locations (“villages”). Geospatial “big” data from satellites and other
existing sensor: s are also sourced from each location. (C) These data are used to train a machine-learning algorithm that predicts microregional poverty from

- food Security / y|e|d prec“c“on ncntradivional dith, v th FaSIons Whiers ri6 Grouha-tre duth @ists
- fine grained poverty estimates
Figure from Chi et al., PNAS 2022



It is easier than ever to make maps with
satellite imagery and machine learning...

... It is crucial that we understand and convey the
limitations and uncertainty of mapped predictions.




Example: (simplified) poverty prediction with SatML

Satellite data

Feature representation

Predicted poverty map Simulated resource
(MOSAIKS) allocation policy
X
supervised (/. it T threshold |l .
learning | ' predictions
LT AT

Select 20% regions with
least predicted wealth

Aiken*, Rolf*, Blumenstock. Fairness and representation in satellite-based poverty maps:
Evidence of urban-rural disparities and their impacts on downstream policy. [IJCAl 2023.




Prediction performance is lower if evaluate only within
rural or urban regions vs. in each country as a whole.
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“This systematically replicates analysis in [1] for ten countries across the globe.

[1] Christopher Yeh, Anthony Perez, Anne Driscoll, George Azzari, Zhongyi Tang, David Lobell, Stefano Ermon, and
Marshall Burke. Using publicly available satellite imagery and deep learning to understand economic well-being in
Africa. Nature communications, 2020.



Targeting eftectiveness is lower if aid program
allocates resources just within rural or urban areas.
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What information does satellite imagery convey about

relative wealth across regions?

Sentinel 2 satellite imagery accessed via Microsoft Planetary Computer




Image embedding distributions: urban and rural
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Two (competing) phenomena contribute to allocational disparities:

1) (Over)reliance on correlation between wealth and urbanization
2) Reversion of predictions to the population means

(A) Summary of allocative biases - by signed error w83, ummary of allocative biases - by rank error
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Satellite data only gives a partial representation of
many ground phenomena we wish to map

= Systematic errors in predictions




Satellite data only gives a partial representation of
many ground phenomena we wish to map

= Systematic errors in predictions

What if we had a more structured, uncertainty based
approach for learning with geospatial data?

= [deally, multiple modalities of geospatial data




Often in GeoML, data do not provide appropriate "ground truth,”
but indirect guidance on label values.

Coarse/incomplete
landcover observations

Coarse (30m)
landcover data —» |
(USGS)

High-res. data for
some classes —»
(OpenStreetMaps)

Rolf*, Malkin*, Graikos, Jojic, Robinson, Jojic.
Resolving label uncertainty with implicit
posterior models, UAI 2022.




Often in GeoML, data do not provide appropriate "ground truth,”
but indirect guidance on label values (— a prior belief).

Coarse/incomplete
landcover observations
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Coarse (30m)
landcover data —» |
(USGS)

Prior belief
on landcover classes

High-res. data for
some classes
(OpenStreetMaps)

Rolf*, Malkin*, Graikos, Jojic, Robinson, Jojic.
Resolving label uncertainty with implicit
posterior models, UAl 2022,




Often in GeoML, data do not provide appropriate "ground truth,”
but indirect guidance on label values (— a prior belief).

Coarse/incomplete
landcover observations

¥s

Coarse (30m)
landcover data —»
(USGS)

High-res. data for
some classes —»
(OpenStreetMaps)

observations
1m imagery (NAIP)

Prior belief
on landcover classes

High-res (1m) landcover
predictions




Learning from uncertain labels is hard:

Supervised learning:

e Uncertain labels — uncertain predictions
v'amenable to rich model classes

v simple training w/ standard loss fxns

Prior belief Predictions from model
on landcover classes trained with CE loss on prior




Learning from uncertain labels is hard:

Supervised learning: Generative modeling:

e Uncertain labels — uncertain predictions v high certainty in posterior w/ soft priors

v ‘amenable to rich model classes v opportunities to model rich structure in the
v simple training w/ standard loss fxns prior beliefs

e typically more expensive to train (requires
sampling, 2x parameters)




Learning from uncertain labels is hard:

Supervised learning: Generative modeling:

v amenable to rich model classes v high certainty in posterior w/ soft priors

v simple training w/ standard loss fxns v opportunities to model rich structure in the
prior beliefs

Our approach: match output of supervised learning model with a
generative model involving provided prior beliet

= merges flexibility of generative modeling with ease of supervised

learning




Setting: learning from a prior belief

Goal: use observations of (x;, p;) pairs to disambiguate uncertainty in prior!

p(C|x;) o p(x;| £)pL)

X }ie oixels {Pi}ic pixels

Pasture/Hay

classes 7 : Open Water

Evergreen Forest
Mixed Forest

Developed Open Space
Developed Low Intensity
Developed Med. Intensity Woody Wetlands
Developed High Intensity Emergent Herbaceous
Barren Land Wetlands

QOON




Optimizing implicit posterior models

Assume generative model p(x | £) exists, but Notation
unknown, then posterior is £ : classes
EE B

p(f | xl-) = C; - p(xl- | f)pi(f) X; . observations

p; : priors over £

c; . normalizing
constant




Optimizing implicit posterior models

Assume generative model p(x | £) exists, but
unknown, then posterior is

p(@|x) = c;- p| O)p(C)

Estimate posterior distribution with a parametrized
model g(Z | x;; @), then we can minimize:

D KL (¢(?1x;:0)lic; - pGs | O)pi(©)) (%)

\

??

Notation

£ : classes
BEE B

X; . observations

p; : priors over £

c; . normalizing
constant

q; : q(C | x;;0)

(e.g., neural net)

.



Optimizing implicit posterior models

Assume generative model p(x | £) exists, but
unknown, then posterior is

p(@|x) = c;- p| O)p(C)

Estimate posterior distribution with a parametrizead
model g(Z | x;; ), then we can minimize:

D KL (¢(Z1x;:0)lic; - pGs | O)pi(©)) (%)

N—,

i q(@1x0) —> “EEN ) x0

st Y plo <1 2,43 0)

L et direct model
imply p(x;| )

Notation

£ : classes
BEE B

X; . observations

p; : priors over £

c; . normalizing
constant

q; : q(C | x;;0)

(e.g., neural net)

s

approximates all existing data with i € batch



Optimizing implicit posterior models

arg min Z KL
0

l

<Q(f | x;; 6)

q(¢ | x;;0)

¢
2., 4(¢ | x; 0)

p{C ))

Notation

£ : classes
BEE B

X; . observations

p; : priors over £

c; . normalizing
constant

q; : q(C | x;;0)

(e.g., neural net)

E



Optimizing implicit posterior models

arg min Z KL
0

l

<Q(f | x;; 6)

q(¢ | x;;0)

¢
2., 4(¢ | x; 0)

p{C ))

Loss function in 2 lines (PyTorch):

def qr_loss(log_q, prior):
log_r = (log_qg.log_softmax(@) + prior.log()).log_softmax(1)

return (log_qg * log_g.exp()).sum(1) - (log_r * log_g.exp()).sum(1)

Notation

£ : classes
BEE B

X; . observations

p; : priors over £

c; . normalizing
constant

q; : q(C | x;;0)

(e.g., neural net)

k.



Optimizing implicit posterior models

arg min Z KL
0 .

(6](f | X 0)||c;

| q(¢ | x;; 0)
2,4 | x;

Two outputs:

q; : direct model output of
the variational posterior

q(58; 0)

K

0) p(c ))
'

r; . implied posterior of g;
and p;

Z( )XI=E

Notation

£ : classes
BEE B B

X; . observations

. priors over 4

: hormalizing
Constant
i 14| x;;0)

(e. g neural net)

k.

r; . implied posterior

s




Optimizing implicit posterior models

0

arg min Z KL(q(f | x;;0)||c;

q(¢ | x;; 0)
.4 1% 0) pi(bﬂ))

Two outputs:

q; : direct model output of
the variational posterior

q(ER; 0) =&

At model convergence, r; and
to the amount possible given data and model class

r; . implied posterior of g;
and p;

2(7) XM=l

should agree

Notation

£ : classes
BEE B B

X; . observations

)
-

. priors over 4

: hormalizing
Constant
i 14| x;;0)

(e. g neural net)

k.

r; . implied posterior

s




Example: land-cover super-resolution

Observations (x;) : Prior beliefs Direct model Implied
1m-resolution (p;) : posterior (7;) :
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NLCD Legend

EEN Open Water Highlighted results:

1 Developed Open Space

[ Developed Low Intensity e On benchmark land cover super-resolution dataset, QR

W Developed Med. Intensity achieves 72.1% loU vs. 59.7% by treating low-resolution labels
WEE Developed High Intensity as ground truth (also higher than previous best at 69.7%)

[ Barren Land

[ Pasture/Hay

BN Evergreen Forest ® on a cross-geography domain adaptation problem, QR/RQ
1 Mixed Forest allows for in-sample predictions from weak sources (NLCD/
1 Woody Wetlands OpenStreetmaps), better than applying models trained on high-
[ Emergent Herbaceous resolution |labels in another region

Wetlands



How do you get a good (global) prior?



Global location embeddings: a “latent space” of geospatial data

' bd A
(at,lon), e X| ¢ P \
Jlon), 2 ‘..\Q /A |
r;
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MOSAIKS
precomputed image ~ SatCLIP
embeddings on a 0.01° grid pretrained location encoder

mosaiks.org > access https://github.com/microsoft/satclip

A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery.
Rolf, Proctor, Carleton, Bolliger, Shankar, Ishihara, Recht, Hsiang. Nature Communications 2021.

SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery.
Klemmer, Rolf, RuBwurm, Robinson, Mackey. AAAI 2025
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Why aren’t we talking (enough)
about uncertainty in GeoML?



Mission Critical — Satellite Data is a Distinct Modality in Machine Learning

Esther Rolf * ' 2 Konstantin Klemmer> Caleb Robinson* Hannah Kerner *°

Abstract

Satellite data has the potential to inspire a seismic
shift for machine learning—one in which we
rethink existing practices designed for traditional
data modalities. As machine learning for satellite
data (SatML) gains traction for its real-world
impact, our field is at a crossroads. We can either
continue applying ill-suited approaches, or we can
initiate a new research agenda that centers around
the unique characteristics and challenges of satel-
lite data. This position paper argues that satellite
data constitutes a distinct modality for machine
learning research and that we must recognize it as
such to advance the quality and impact of SatML
research across theory, methods, and deployment.

Rolf*, Klemmer, Robinson, Kerner*. Position: Mission critical
— Satellite data is a distinct modality in ML, ICML 2024.

Satellite data presents challenges and opportunities distinct
from other data modalities (Figure[I). Unlike natural images,
the size of targets in satellite images span a logarithmic scale
from < 1m (e.g., trees) to > 1km (e.g., forests). Temporal
patterns in satellite time series also span logarithmic scales,
from hours or days (e.g., floods) to years or decades (e.g.,
sea level rise). Data are acquired using a variety of sensors
that capture diverse spectral channels (beyond 3-channel
RGB) and precise measurements (beyond 8 bits). Satellites
collect data over the entire surface of the Earth at fixed time
intervals and spatial resolutions. Observations are acquired
from an overhead perspective from fixed altitudes and lack
a “natural” orientation, unlike natural images.

While there has been increasing interest in ML for satellite
data (SatMT ) (Zhu et al [(2017): Tahle AlTh SatMT . research




GeoML warrants specialized methods.

underlying values
(lat, lon, time,)




GeoML warrants specialized methods.

underlying values sparsely sampled “ground-truth™ data
(lat, lon, time)
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AND/OR
coarse or uncertain satellite annotations

label: vy,
confidence: 20%




GeoML warrants specialized evaluation.

samples only avilable at spatial autocorrleation of
certain locations values and observations
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train set . test set . buffer (unused)

Evaluation challenges for geospatial ML
Rolf, Workshop on ML for Remote Sensing at ICLR 2023.

Position: Mission critical — Satellite data is a distinct modality in Machine Learning.
Rolf, Klemmer, Robinson, Kerner. ICML 2024.



We need to talk (more) about uncertainty in
geospatial machine learning



We need to talk (more) about uncertainty in
geospatial machine learning

There are some excellent integrations of uncertainty in GeoML predictions!

ensemble-based uncertainty calibration-based intervals

Data Uncertainty Quantification Methods Results

Classical
\\ \
\
Ground truth N - Olofsson area estimation Colidance & derveds far
(n points) - Stratification —.  Areaestination
b — Prediction Powered —9 Area change
Standard deviation (m) - -
e Infergr}ce (Pe) - Regression coefficients
H / - Stratified PPl
A / /
> / // Naive imputation
[ (not statistically valid)

Quantifying uncertainty in area and regression

A high-resolution canopy height model of the Earth coefficient estimation from remote sensing maps
Lang et al. 2023 Lu et al. 2024



We need to talk (more) about uncertainty in
geospatial machine learning

We need methods tailored for the uncertainties in geospatial data:

underlying values sparsely sampled “ground-truth” data
(lat, lon, time)

AND/OR
coarse or uncertain satellite annotations

-—

1. Uncertainty due to partial representativity of geospatial data



We need to talk (more) about uncertainty in
geospatial machine learning

We need methods tailored for the uncertainties in geospatial data:

underlying values sparsely sampled “ground-truth” data
(lat, lon, time)

2. Uncertainty due
to spatially biased
distributions of data

AND/OR
coarse or uncertain satellite annotations

-—

1. Uncertainty due to partial representativity of geospatial data



We need to talk (more) about uncertainty in
geospatial machine learning
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