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Write a rap about submodularity

(Verse 1)

I'm here to talk about submodularity
It's a concept that's often misunderstood
But let me break it down for you

And make it easy to understand, too

(Chorus)
Submodularity, oh so sweet

It's a property that can't be beat

In optimization, it's a treat
And it makes everything more neat

(Verse 2)
It's a mathematical property
That helps us make the best choice “Photorealistic closeup video of two pirate ships
Wh 're trying t timi H HEH H
G - Cifent AL R battling each other as they sail inside a cup of coffee”
(o) gle # 0 Q It helps us find the optimal voice
Translate Turn off instent transietion 0 (Brldge)
It's all about the diminishi t
English Spanish French Detect language -~ - English Spanish German -~ m s altabod € diminis Ing returns
The more you take, the less it earns
Machine learning is getting * Maschinelles Lernen wird But with submodularity, we learn
more accurate IMMeTgesaes To make the most of what we have to earn
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How should we intelligently gather data?
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Key questions

How do we assess utility/value of an experiment?
¢ Reduction in uncertainty? Maximization of reward? Estimating integrals, ODEs?
¢ How do we quantify uncertainty?
According to which protocol do we select our experiments?
¢ A priori/Non-adaptive/open-loop vs sequential/adaptive/closed-loop?
¢ Constraints in the selection? E.g., cost, movement, ...
How do we find an optimal set / sequence of experiments?
¢ Convex relaxations?

¢ Submodular optimization?

How much does optimal design help?

¢ Sample complexity, regret bounds, adaptivity gap, robustness, ...



How should we collect data to
maximally reduce uncertainty?



Optimal experimental design

Optimal
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Bayesian experimental design

ON A MEASURE OF THE INFORMATION PROVIDED BY
AN EXPERIMENT! *
By D, V. LinpLey
University of Cambridge and University of Chicago

1. Summary. A measure is introduced of the information provided by an
experiment. The measure is derived from the work of Shannon [10] and involves
the knowledge prior to performing the experiment, expressed through a prior
probability distribution over the parameter space. The measure is used to
compare some pairs of experiments without reference to prior distributions;
this method of comparison is contrasted with the methods discussed by Black-
well. Finally, the measure is applied to provide & solution to some problems
of experimental design, where the object of experimentation is not to reach
decisions but rather to gain knowledge about the world.

2. Introduction. Shannon has introduced two important ideas into the theory
of information in communications engineering. The first idea is that informa-
tion is a statistical concept. The statistical frequency distribution of the sym-
bols that make up a must be idered before the notion can be
discussed adequately. The second idea springs from the first and implies that
on the basis of the frequency distribution, there is an essentially unique fune-
tion of the distribution which measures the amount of the information. It is the
purpose of the present paper to apply these two ideas to statistical theory by
discussing the notion of information in an experiment, rather than in a mes-
sage. The second of Shannon’s ideas has been applied to statistical theory by
Kullback and Leibler (8], [7], [8]; but our application is quite distinet from
theirs. The interpretation of Shannon’s ideas in current statistical theory has
been given by McMillan [9). The discussion in that paper is related to, and
partly inspired, that given here. A referee has kindly pointed out that Shan-
applied in psychometric problems by L. J. Cronbach in
report (14]. Definition 2 rticular, is used by Cronbach

n communications en

is that there is a transmitted

Dennis V. Lindley
1956 Ann Math Stat

Sntiationl Sevwooe
15, Vol 10, No. 8, 273-304

Bayesian Experimental Design: A Review

Kathryn Chal and Isabella Verdinelli

Abstract, This paper reviews the literature on Bayesian experimental
design. A unified view of this topic is presented, baged on a decision-
theoretic approach. This framework casts criteria from the Bayesian lit-
erature of design as part of a single coh pp h. The decisi
theoretic structure incorporates both linear and nonlinear design
problems and it suggests possible new directions to the experimental
design problem, motivated by the use of new utility functions. We show
that, in some special cases of linear design problems, Bayesian solutions
change in a sensible way when the prior distribution and the utility func-
tion are modified to allow for the specific structure of the experiment.
The decision-theoretic approach also gives a mathematical justification
for selecting the appropriate optimality criterion.

Key words and phrases: Decision theory, hierarchical linear models, lo-
gistic regression, nonlinear design, nonlinear models, optimal design,
optimality criteria, utility functions

1. INTRODUCTION tation and, indeed, often motivates the experiment,

1.1 Experimental Design

Experimental design involves the specification
of all aspects of an experiment. Common sense,
available resources and knowledge of the motiva-
tion for carrying out the experiment often help in
selecting important features that depend on the
specific problem. Not all aspects of experimental
design are susceptible to abstract mathematical
treatment, but the choice of values for those vari-
ables that are under the control of the experimenter
can be simply expressed in a mathematical frame-
work. This |

in the scientific literature and is

n has been considered at length
ved on in this

paper
In designing an experiment, decisions must |

nade before data collection, and data col

Bayesian methods can play an important role.
Bayesian decision theory also sharpens thinking on
the purpose of the experiment, Like most areas of
Bayesian statistics, Bayesian experimental design
has gained popularity in the past two decades, but
like many areas of Bayesian statistics, lications
to actual experiments still lag behind the theory.
Apart from Flournoy (1993), there are no true “case
studies” that we know of where Bayesian ideas
have been formally applied to the design of an ac-
tual scientific experiment before it is done. This is
a very important area for future work. There are,
mining an experi-
sign framework after it has

however, mples of e

ment in a B
beer Maller and Parmi-

mples presented in

Chaloner & Verdinelli,
1995 Stat Sci

Prior P(6)
Experiments Y, forx € D

mxin E, [U(P( 0|y, ))]

How to collect data to
minimize uncertainty?



Applications to spatial statistics & network design

Statistics & Probability Letters 2 (1984) 223-227
North-Holland

Journal of Machine Learning Rescarch  (2008) 235-284 Submitied 9/06; Revised 907, Pablished 2108

OPTIMAL MONITORING NETWORK DESIGNS Near-Optimal Sensor Placements in Gaussian Processes:

Theory, Efficient Algorithms and Empirical Studies r
W.F. CASELTON

.. (o . . Andreas Krause KRAUSEA@ (S CMU.EDU
P of Civil Eng, ing, Us of British Columbia, Vancouver, Canada Computer Science Department

Carnegie Mellon University ~ i
J.V. ZIDEK Pinsburgh, PA 15213
Depariment of Statistics GN -22, University of Washington, Seartle, WA 98105, USA i

Ajit Singh ANT@CS.CMU.EDU
Received October 1982 Machinf Learning D.epar{mem
Revised February 1984 Carnegie Mellon University

Pittsburgh, PA 15213
Abstract; The selection of a itoring network is d as a decision problem whose solutions would then be optimal. Carlos Guestrin GUESTRIN@CS.CMU.EDU
The theory is applied where the ing field has a normal p ili Computer Science Department and Machine Learning Department

Carnegie Mellon University

Keywords: decision analysis, information theory, network design, proper local utility, monitoring networks, Pittsburgh, PA 15213

1. Introduction of specifying probability distributions on uncoun- Battor: Chris Wiltiams

tably infinite di I function spaces are

In environmental management and resource de-
velopment, for example, it is often realized only
retrospectively, that earlier and larger expendi

avoided by adopting as a surrogate of the true
environment in a region, the view provided by a

would have been justified to create a monitoring
network of more adequate density and duration.
This is always the case where long term monitor-
ing is envisaged because the designer cannot fully
foresee all of the future benefits derivable from a
network by all possible users and uses. And even
where he can see a benefit, he can still be ignorant

of the procedures or models by which the overall

regional information might be extrapolated

(hypothetical) network of high station density. The
performance of any prospective network is then
judged by how well it conveys the information
contained in this ultimate (but hypothetical) net-
work view. Our analysis concentrates on this
ultimate network of m locations, or more precisely,
the state of nature ¢ = {¢',...,.¢™} corresponding
to the network. The column vector, ¢/, consists of
quantities determined at different times or for
different attributes at location 1

It

Caselton & Zidek ‘84

Abstract

‘When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs),
choosing sensor locations is a fundamental task. There are several common strategies to address this
task, for example, geometry or disk models, placing sensors at the points of highest entropy (vari-
ance) in the GP model, and A-, D-, or E-optimal design. In this paper, we tackle the combinatorial
optimization problem of maximizing the mutual information between the chosen locations and the
locations which are not selected. We prove that the problem of finding the configuration that max-
imizes mutual information is NP-complete. To address this issue, we describe a polynomial-time

approximation that is within (1 —1/e) of the optimum by exploiting the submodularity of mutaal

information. We also show how submodularity can be used to obtain online bounds, and design
pr We then extend our alg

ignificant speedups

ithm to exploit lazy evaluations
1so ext
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Bayesian Active learning in Machine Learning
Gaussian Process Regression: Active Data _—- —

Information, prediction, and query by Bayesian Methada Selection and Test Point Rejection ) k
committee for Adaptive Models B, B ¥
.. A5 Nall: 5 (Yrasno) Clana . 3 P GEICIN k] | L "
Four Boamis A Siaaiian Seank Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer ; ’. “ ) . '
Computer and Information Seiences ATLT Bell Laboratories T } - ‘
Unisasy of Ol Sty Gy Mo 58, Mo by Thess by Technische Universitit Berlin, FR2-1, Franklinstr, 28-29, S aormat ol B v P r
D-10587 Berlin, Germany e i i B g

Eli Shamir Naftali Tishby David J.C. MacKay . =2
Tnstitute of Ce Sciene nstitute and sontag@cs.tu-berlin.de
Hebrew University, Jerusalem enter
shamir@cs.huji.ac.il ehrew m In Partial Fulfilly he Requirements .
B GP Regression [Seo+ ‘00]

Abstract Cortainty Prapat Cortataty

Bayesian Active Learning for Classification and
Preference Learning

Neil Houlsby, Ferenc Huszér, Zoubin Ghahramani, Maté Lengyel
Computational and Biological Learning Laboratory
University of Cambridge

GP Classification [Houlsby+ ‘11]
Query by committee David MacKay

[FSST 1992] 1992

Deep Bayesian Active Learning with Image Data

Yarin Gal'2 Riashat Islam' Zoubin Ghahramani '

Deep learning [Gal+ ‘17]



How should we collect data to
help us make better decisions?
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Value of information

Information Value Theory

RONALD A. HOWARD, SENIOR MEMBER, IEEE maX ]:ny [max ]:E [R (9’ a) | yX]
X a

Abstract—The information theory developed by Shannon was
designed to place a quantitative measure on the amount of in-
formation involved in any communication. The early developers
stressed that the information measure was dependent only on the
probabilistic structure of the communication process. For example, if
losing all your assets in the stock market and having whale steak
for supper have the same probability, then the information associ-
ated with the occurrence of either event is the same. Attempts to
apply Shannon’s information theory to problems beyond com-
munications have, in the large, come to grief. The failure of these
attempts could have been predicted because no theory that involves
just the probabilities of outcomes without considering their con-

sequences could possibly be adequate in describing the importance .
of uncertainty to a decision maker. It is necessary to be concerned SICk Hea/thy
not only with the probabilistic nature of the uncertainties that sur-

round us, but also with the economic impact that these uncertainties

Fuid g, buts No treatment | -S$S 0

Treatment S -S

Ronald Howard How to collect data to make
IEEE TSSC 1966 better decisions?



Multi-armed Bandits

J. R. Sratisi. Soc. B (1979),
41, No. 2, pp. 148-177

Bandit Processes and Dynamic Allocation Indices

By J. C. GrTTINS
Keble College, Oxford

[Read before the ROYAL STATISTICAL SOCIETY at & meeting organized by the RESEARCH SECTION
on Wednesday, February 14th, 1979, the Chairman Professor J. F. C. KINGMAN in the Chair]

SumMMARY

The paper aims to give a unified account of the central concepts in recent work on
bandit processes and dynamic allocation indices; to show how these reduce some
previously intractable problems to the problem of calculating such indices; and to
describe how these calculations may be carried out. Applications to stochastic

heduli ial clinical trials and a class of search problems are discussed.

'8, 5eq

Keywords: BANDIT PROCESSES; DYNAMIC ALLOCATION INDICES; TWO-ARMED BANDIT PROBLEM;
MARKOV DECISION PROCESSES; OPTIMAL RESOURCE ALLOCATION; SEQUENTIAL RANDOM
SAMPLING | CHEMICAL RESEARCH; CLINICAL TRIALS, SEARCH

1. INTRODUCTION

A scheduling problem

There are n jobs to be carried out by a single machine. The times taken to process the
jobs are independent integer-valued random variables, The jobs must be processed one at a
time, At the beginning of each time unit any job may be selected for processing, whether or
not the job processed during the preceding time unit has been completed, and there is no
penalty or delay involved in switching from one job to another. The probability that 14 | time
units are required to complete the processing of job i, conditional on more than ¢ time units
being needed, is p(?) (i = 1,2,...,n; 1€ Z). The reward for finishing job / at time s is a*V;
(O<a<l; V;>0,i=1,2,...,n), and there arc no other rewards or costs, The problem is to
decide which job to process next at each stage so as to maximize the total expected reward,

A mulii-armed bandit problem

There are n arms which may be pulled repeatedly in any order, Each pull takes one time
unit and only one arm may be pulled at a time. A pull may result in cither a success or a
failure. The sequence of successes and failures which result from pulling arm i forms a
Bernoulli process with an unknown success probability 0, (i = 1,2, ...,n). A successful pull

1< 1), whilst an unsuccessful pull yields a zerc

on any arm at time 7 yie
ard. At t z ), |

J.C. Gittens
J Roy Stat Soc 1979

ADVANCES IN APPLIED MATHEMATICS 6, 4-22 (1985)

Asymptotically Efficient Adaptive Allocation Rules*
T. L. LA1 AND HERBERT ROBBINS
Department of S Columbia University, New York, New York 10027

1. INTRODUCTION

Let IT; (j = 1,...,k) denote statistical populations (treatments, manu-
facturing processes, etc.) specified respectively by univariate density func-
tions f(x; 8;) with respect to some measure v, where f(-; -) is known and
the 6, are unknown parameters belonging to some set ©. Assume that
2 1x1f(x; @) dv(x) < o for all § € B. How should we sample x,, x,,...
sequentially from the k populations in order to achieve the greatest possible
expected value of the sum S, = x, + -+ +x, as n = co? Starting with [3]
there has been a considerable literature on this subject, which is often called
the multi-armed bandit problem. The name derives from an imagined slot
machine with k > 2 arms. (Ordinary slot machines with one arm are
one-armed bandits, since in the long run they are as effective as human
bandits in separating the victim from his money.) When an arm is pulled,
the player wins a random reward. For each arm j there is an unknown
probability distribution II; of the reward. The player wants to choose at
each stage one of the k arms, the choice depending in some way on the
record of previous trials, so as to maximize the long-run total expected
reward. A more worthy setting for this problem is in the context of
sequential clinical trials, where there are k treatments of unknown efficacy
to be used in treating a long sequence of patients

An adaptive allocation rule @ is a sequence of random variables ¢,, @,,..

Lai & Robbins
Adv Appl Math ‘85

How to collect data to make
maximize reward?

max [E Z Ry,
T
t

Exploration—exploitation

dilemma
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tructured bandits / Bayesian optimization

ON BAYESIAN METHODS FOR SEEKING THE EXTREMUM

J. MoSkus

Institute of Physics and Mathematics
Academy of Sciences Lithuanian SSR

Vilnius, USSR

1. Introduction

Many well known methods for seeking the extremum had been deve~
loped on the basis of quadratic approximation.

In some problems of global optimization the function to be mini-
mized can be considered as a realization of some stochastic function.
The optimization technique bascd vpon the minimization of the expec-
ted deviation from the extremum is called Bayesian.

2. The definition of Bayesian methods

Suppose the function to be minimized is a realization of some
stochastic function f(X)=f(X, ), xeAc R™ where e 52  is some
fixed but unknown index.

The probability distribution r onQ is defined by the equalities

B) ; . o}_. k
Plo flx,wleye, it ,nwe@FFe (Yo o)neil.
where £, x [y, .,Y,), X €A, 11, .,N is the a priori probability
distribution function.

The observation is evaluation of the function j' at some fixed
point X, .+ The vector

= [6lv J o
: F(X:) X /

J. Mockus ‘75

Isition

function

Acqu

How to collect data to make
find maximum of an unknown function?

14



Optimistic Bayesian Optimization with GPs

— Best lower
bound

Key idea: Focus exploration on plausible maximizers
(upper confidence bound > best lower bound)

10

ILEE TRANSACTIONS ON INFORMATION THEORY. VOL. 55, NO. 3, MAY 2012

Information-Theoretic Regret Bounds for Gaussian
Process Optimization in the Bandit Setting

Niranjan Srinivas, Andreas Krause, Sham M, Kakade, and Matthias W, Seeger

Abutract—Many opplicatioas require optimizing an unknawn,
wolsy function that 1o eval this task

7:',‘_"- Dy balanci q stitlon and

as & multiarmed h-ﬂl.reﬂ- ‘where the payolf function is of-
ther sampled from 3 Guussian process (GP) or has low norm in &
reproducing kerel Hilbert space. We resalve the important open
Md“mmhl&nﬁlpmhw

Wnumrrmuw analyze an in-

tuitive Gaussian process upper cunfidence bound (GP-UCB) al-
pdh-.ndh—dmu-llﬂnmlulnnul-nhndh
1 novel connection

gatin, establishing u between GP op
H-M- -ndaqnd-toul destgn. Moreover, by Nnndlqll-
latter in terms of eperator specira, we obtain explicit sublinear

mbmdah-yw_nbmdmhmlhn In

h-ln-lu In our experiments n-l umnr

mGP.UCBmmmmamnm GPop-
imization approuches.

Index Terms—Bandit peoblems, Bayesian prediction, ex.
perinentsl design, Guasiisn process (GP), information gain,
nanparametric statisties, online learming, regret hownd, statistieal

L INTRODUCTION
N MOST stochastic optimization seitings, ing the

design [5], where the function is to be explored
glabdly with as few evaluations as possible, for example, by
maximizing information gain. The challenge in both approaches
is twofold: we have to estimate an unknown function [ from
noisy sumples, and we must optimize our estimate over some
high-dimensional input space. For the former, mach progress
has been made in machine learning through kernel methods
and Gaussian process (GP) models [6], where smoothness
assumptions about [ are encoded through the choice of kemed

in a flexible ic fashion, Beyond Euclilean spaces,
kernels can be defined on diverse domains such as spaces of
graphs, sets, or lists.

We are with GP ization m the

bandit setting, where f is sumpled from a GP distribution or has
Tow “complexity” measured in terms of its reproducing kemel
Hilbent space (RKHS) norm under some kemel. We provide
the first sublinear regret bounds in this nonparametric setting,
which imply convergence rates for GP optimization. In partic.
ular, we analyze the Gaussian process upper confidence bound
{GP-UCB) algorithm, 2 simple and intuitive Bayesian method
171,193 W’Mk objectives are different in the multiarmed bandit

unknown function is expensive, and sampling is 0 be
minimized. Examples include choosing advertisements in
sponsored search to maximize profit in a click-through model
(2] or learning optimal control strategies for robots [3). Pre-
dominant upproaches 1o this msblem include the mnhiumml
bandit paradigm (4], where the goal is to maximize

and design our results draw a close
technical connection between them: our regret bounds come in
teoms of an informaiion guin quantity, measuring how fast [
can be learned in an information-theoretic sense. The submod-
uwlarity of this function sllows us 1o prove sharp regrel bounds
for particular covariance functions, which we demonsirate for

Masuncript seseived October 17, 2010; accopled September 27, 2011, Date
of pablication Jarmary 24, I012; date of coment version Ageil 17, 2012, Thiy
part by e Office of Naval Research under Gram
N 14-09-1- 1024, In past by the Nagknal Selesce Foardation saues Geans
SOOIV wd SRSyt b 2 31 e Mool Ctporsitons
and In pan by she Excellence Tnitistive of the Genan Resesc!

(DFG). m-mmumwmu-mw.pmh
ICML 201011

N Srinivas is with the Callfoenia Insitute of Techoology, Pusatens, CA
91125 USA fe-mail. sivaniun @ calinch edu).

AT b it e s e bl of Tochaciogy, Zackc 3006,
Switaecand el I
M, Kekade is with Microsoft Reseurch, New nd, Cambridge, MA
142 S, amd s wth e Depastmess of Satistics. University of Pesc-
oy, RS, FA 19104 510U
elu)

M. Seept i ih e Seboot of Compitr and Commmunicacn Eeieca
Exole Polylechsique Fédtrale d Louanne, Lassasce CH-1015, Switzernd
(e el matthias secger@ cpfi ch.

Communiciae by D. Palimar. Awociate Filiioe for Detection and Extima-

used squared exp and Matém kernels.

Related Work: Our work generalizes stochastic linear
optimization in a bandit setting, where the unknown function
comes from a fnite-dimensional linear space, GPs are nonlinear
random functions, which can be repeesented in an infinite-di-
mensional linear space, For the standand linear seiting, Dani
el al. [10] provide & neas-complele charucterization explic-
itly dependent on the dimensionality. In the GP setting, the
challenge is 1o characterize complexity in a different manner,
through peoperties of the kemel function. Our technical contrd-
butions ase twofold: finst, we show how to analyze the nonlinear
setting by focusing on the concept of information gain, and
second, we explicitly bound this information gain mensure
using the concept of submodularity [11] and knowledge about
kernel operator spectea.

Compared to an earlier version of [1], this paper is signif-
icantly expunded, including detailed proofs, additional expla-
nations (¢, 8. Fl;. 3), and more comprehensive experimental
of the GP-UCB algorithm.

o lvl}mllﬁ.
Dugital Obyect lhrllfnt IO FIOWTIT 2001 2152033

Kldnbergrld. [12] provide regret bounds under weaker and
Jess configurable assumptions {only Lipschitz continuity w.r.t.

NI&MMIMOEIZ 1EEE

90,2024 0L 002101 UTC from IEEE Xploro, Reavictons agply.
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Applications of Bayesian optimization

=
e

AutoML
[Vizier, SageMaker,

Env. Monitoring
[Marchant+ 12, Hitz+ ‘14]

Tuning SwissFEL
[Kirschner+ 22]

Bipedal locomotion
[Calandra+14]

Molecular Design

[Romero+ 13,
Gomez-Bombarelli+ '18, ...] see

PV Optimization
[Abdelrahman+ ‘16]

S. Harkema, The Lancet, Elsevier

Education [Lindsey+ "15] Spinal_cord therapy
Energy efficiency for HPC [viyazaki+ 18] [Sui+ 18] 16



A Sober Look at LLMs for Material Discovery:
Are They Actually Good for Bayesian Optimization Over Molecules?

Agustinus Kristiadi! Felix Strieth-Kalthoff> Marta Skreta?! Pascal Poupart®' Alin Aspuru-Guzik?'

Article | Published: 28 February 2024

Identifying general reaction conditions by bandit
optimization

Jason Y. Wang_ (£ 1{Z2#7), Jason M. Stevens, Stavros K. Kariofillis, Mai-Jan Tom, Dung_L. Golden, Jun Li,

Geoff Pleiss ' Jose E. Tabora, Marvin Parasram, Benjamin J. Shields, David N. Primer, Bo Hao, David Del Valle, Stacey

DiSomma, Ariel Furman, G. Greg Zipp, Sergey Melnikov, James Paulson & Abigail G. Doyle &

DOI: 10.1039/D3SC05607D (Edge Article) Chem. Sci., 2024, 15, 7732-7741

Combining Bayesian optimization and automation to
simultaneously optimize reaction conditions and routes*

Nature 626, 1025-1033 (2024) | Cite this article

Bayesian optimization algorithms for accelerator physics

Oliver Schilter ' *?*, Daniel Pacheco Gutierrez <, Linnea M. Folkmann ¢, Alessandro Castrogiovanni “, Alberto Garcia-Duran ¢,
Federico Zipoli 2, Loic M. Roch ) “and Teodoro Laino 22

Show

~

more

- »

A Gentral Science 2 Not107ssue] 3 Ascle A Phys. Rev. Accel. Beams 27, 084801 - Published 6 August, 2024

Cite Share Jumpto Expand
ARTICLE | May 22,2024

Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by
Active Learning

Tobias Vornholt, Mojmir Mutny, Gregor W. Schmidt, Christian Schellhaas, Ryo Tachibana, Sven Panke, Thomas R. Ward*, Andreas Krause*, and Markus Jeschek*

Article | Open access | Published: 03 February 2024

A dynamic Bayesian optimized active recommender e
system for curiosity-driven partially Human-in-the-loop
automated experiments

Arpan Biswas &, Yongtao Liu, Nicole Creange, Yu-Chen Liu, Stephen Jesse, Jan-Chi Yang, Sergei V.

Kalinin, Maxim A. Ziatdinov & Rama K. Vasudevan &

npj Computational Materials 10, Article number: 29 (2024) | Cite this article

Ryan Roussel @', Auralee L. Edelen’, Tobias Boltz @', Dylan Kennedy', Zhe Zhang 3", Fuhao Ji
Daniel Ratner (', and Andrea Santamaria Garcia (2 et al.

Modern Adaptive Experiment Design:
Machine Learning Perspective

Diss. ETH No. 29987

)1, Xiaobiao Huang @',
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Some modern research challenges

f(x)

¢ How do we reliably quantify epistemic
uncertainty for complex models
(deep nets, LLMs, ...)?

¢ How do we learn complex, data-driven
priors from related tasks?

Ig(X)

¢ How do we use uncertainty not only
to guide exploration, but
to act cautiously / safely?

¢ How do we scale to complex design
spaces, e.g. via (Bayesian) RL?

18



Bayesian Active learning for Large Language Models?

Why should | attend the Bayesian Decision Making under
Uncertainty workshop at NeurlPS 2024?

® Attending the "Bayesian Decision-making and Uncertainty" workshop at NeurlPS 2024 offers a
unique opportunity to engage with leading experts and the latest advancements in the field.

Here's why you should consider participating:
1. Engage with Cutting-Edge Research

The workshop will feature presentations on recent developments in Bayesian methods, including
topics like Bayesian optimization, active learning, uncertainty quantification, Gaussian processes,
spatiotemporal modeling, and sequential experimental design. Engaging with this content will

enhance your understanding of how these methods are applied across various domains.

GP SEMINAR SERIES
2. Learn from Esteemed Speakers
The event boasts a lineup of distinguished speakers:
* Roman Garnett (Washington University in St. Louis and Uber)
* Jacob R. Gardner (University of Pennsylvania)
» Virginia Aglietti (Google DeepMind)
* Esther Rolf (University of Colorado Boulder)

* Mark van der Wilk (University of Oxford) 19



Transductive “prediction-oriented” active learning

Jonas Bhavi Lenart Yarden
Hubotter Sukhija Treven As

Can we make better predictions by learning a specialized
model p(6 | ™) for each task =™ at test-time?

. Which?
Given: P:itra'”ed LM select data “—
o Prior p(0) D = {(x;, ¥i) Hizq
o Task x™ 1 ,
~ Compute posterior

Prompt .
1 Fine-tuned LLM

Make prediction
p(y* 1 x5,Dy) = p(y*16,x*)dp(6 | x*,Dy~),



Informative sampling for transductive learning

Jonas Ido
Hlubotter Hakimi

Minimize epistemic uncertainty about prediction:

T =argmax (fo;ye | T1, Y1) |57
xED KA-:-

+
+
+

3+ o+ +

Data Manifold

K_, Selected Data

Full Data Space

+ +

xl:taylztyya:) *

arg min H (f,
xeD

Closed-form with a linear model f,+
if w and y, = f. + € are Gaussian

Motivation: linear representation
hypothesis in LLMSs
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Bits per Byte ({ better)

Active learning for test-time-tuning LLMs
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Closing the loop with Bayesian Decision Making
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