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(Semi-) Joking advice:
Don’t write a book...



Book timeline...
(4 authors, January 2013)

Bayesian Optimization book

Nando de Freitas <nando®@cs.ubc.ca>
to me, Michael, Frank, Nando «

OK guys. | think it's time for us to do this seriously.



Expected Improvement
with Noise



Simple Recipe for
Bayesian Experimental Design

Step 1: build a model of (noisy) observations (x, y)

e |atent function model, p(f) e.g., GP
e observation model, p(y | x, ¢), ¢ =f(x) e.g., Gaussian noise



Simple Recipe for
Bayesian Experimental Design

Step 2: choose a utility function u(D), D = {(x, y)}



Simple Recipe for
Bayesian Experimental Design

Step 3: give up on the optimal policy
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Simple Recipe for
Bayesian Experimental Design

Step 4: derive a policy via one-step lookahead (greedily
maximize one-step expected gain in utility D — D’)

a(x; D) = IE[u(D’) | x, D] —u(D)

(...nothing to see here...) u(D;)

/}%



Simple Recipe for
Bayesian Experimental Design

Step 4: derive a policy via one-step lookahead

a(x;D) = E[u(D’) | x, D] — u(D)

(wrt noisy observation y! consequence:

in general, penalizes high noise)
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Prevalent in BayesOpt!

Utility Policy
simple reward expected improvement
global simple reward knowledge gradient

information gain mutual information (aka entropy search)
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Noiseless expected improvement

utility (best seen value):

uD) = ¢* = max f

marginal gain:
max(¢ - ¢, 0)

expected utility easy to
compute, has nice
properties, etc.

— p(¢|x,D)
— max(¢ - ¢;°0)
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Noiseless expected improvement

utility (best seen value): — p(¢|xD)
uD) = ¢* = max f = EERg—

marginal gain: ,
max(¢ - ¢, 0)

(L9 p—9¢
expected utility easy to ~ ®u(x:D) = (g~ ¢ )‘1’( ) +0 ¢( )
compute, has nice
properties, etc. 13



Noiseless expected improvement

— p(¢|x,D)
— max(¢ - ¢;°0)

expected utility easy to

compute, has nice . ¢,
properties, etc. ¢

very tempting to start ey (x;D) = (1 — ¢%) q,(/l —¢ ) + U¢(P —9
here and try to “fix” o a

this!
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“Fixing” the expected utility

plug-in estimators: use noiseless El with “guess” of max f
e expectation of El

with respect to f Eee e

(Letham, et al. 2019)

sampled acquisition functions

— = = e\ e . =




Let’s start with utility!

Idea: consider gathering data to support a
recommendation after optimization

action space: visited locations x /

v(p)

utility: risk-neutral \

optimal recommendation: = (D)

maximum of posterior mean on x = u(D)
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The noisy setting: Utility

maximum of posterior mean on x = u(D)

e compatible with noiseless El!
e compatible with knowledge gradient!
(just a different action space)

R

v(¢)

= (D)
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The difficulty

maximum of posterior mean can be anywhere!

local reasoning of just f(x), y not enough!
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The fix (Frazier, et al. 2009)

posterior mean update is linear in observed value




The fix (Frazier, et al. 2009)

can compute piecewise linear update to max in O(n? log n)

— p(2)
W maX(a ) bZ)
® MZ‘

X
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The fix (Frazier, et al. 2009)

sums of standard normal CDFs, PDFs as before

D ai[®(eir) — (ci)] + bi[$(c) — Blein)]

l

— p(2)
e
[ ] z‘
H / o
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The result

handles hetereoskedastic noise automatically / correctly
handles correlations in / global nature of posterior mean
noiseless El special case

closed form

— p(2)

. o . —— max(a + bz)
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Alternative approaches |

—— plug-in estimate, ¢* ~ maxy (8.17)
— e B
/ ™~ \ -/,‘/ \,\ ‘// \\
\_\ / \ //—-"’ \\ ,// \\ 3 /\.\
N / / B 4 ./ A /
—— LETHAM et al.’s approximation (8.20) v next observation location 3
—~ //‘/ N\
S = - = |
g / \ _— o T \\ // \\\\ /,/7 —— // \\.
R / \ - 4 \ / N\ // / \ /
\ / \\ . \/ \*-,, ./ ‘,/ \. |
—— expected improvement (8.16) .
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Why?

e ignores correlations in posterior mean update

e assumption of exact observations in expectation does not
match true observation model

e (but honestly this is all fine for highish SNR)

— p(2)

. o —— max(a + bz)




Marginalizing
Hyperparameters in Policy



Marginalizing hyperparameters
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Standard approach

Let utility u(D; 6) depend on 6 and integrate the
hyperprameter-conditional acquisition function against the
hyperparameter posterior

J a(x;D, 0) p(0 | D) do
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Standard approach

Let utility u(D; 6) depend on 6 and integrate the
hyperprameter-conditional acquisition function against the
hyperparameter posterior

J a(x;D, 0) p(0 | D) do

\ blind to uncertainty in 6!
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Standard approach

Let utility u(D; 6) depend on 6|and integrate the
hyperprameter-conditional acquisition function against the
hyperparameter posterior

J a(x;D,0) p(0 | D) do

\ blind to uncertainty in 6!
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Alternative approach

Define utility with respect to marginal model from the beginning!

E.g., for El or KG, use 6 marginal posterior mean (for a terminal
recommendation we’d be marginalizing 6, right?)

fumx; 6) p(0 | D) o
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Example

e function is f(x) = x or f(x) = -x

e knowledge gradient

e for standard approach,
acquisition function is flat!
(maximum of 6-conditional
posterior mean always equal)

e for alternative approach, get
sensible answers (prefer
sampling on boundary)
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History of BayesOpt



Who first proposed the following
policies?

probability of improvement?
expected improvement?
upper confidence bound?

knowledge gradient?
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What | thought...

probability of improvement?
expected improvement?
upper confidence bound?

knowledge gradient?

Harold Kushner, 1964
Jonas Mockus, 1972
Cox and John, 1998
Frazier, et al., 2009
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| was wrong!

probability of improvement?
expected improvement?
upper confidence bound?
knowledge gradient?

Harold Kushner, 1964
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Okay we can agree on this right? (1964)

H. J. KUSHNER

RIAS, Inc.,
Baltimore, Md.

A New Method of Locating the Maximum
Point of an Arbitrary Multipeak Curve
in the Presence of Noise'

A versatile and practical method of searching a paramelter space is presented. 71heo-
relical and experimental resulls illustrate the usefulness of the method for such problems
as the experimental optimization of the performance of a system with a very general
multipeak performance function when the only available information is noise-distrib-
uted samples of the function. At present, its usefulness is resiricted to optimization
with respect to one system parameter. The observations are taken sequentially; bui, as
opposed to the gradient method, the observation may be located anywhere on the pa-
rameler interval. A sequence of estimates of the localion of the curve maximum is gener-
ated. The location of the mext observaiion may be inlerpreted as the location of the
most likely competitor (with the current best estimate) for the location of the curve
maximum. A Brownian motion stochastic process is selected as a model for the un-
known function, and the observations are interpreled with respect to the model. The
model gives the results a simple intuitive interpretation and allows the use of simple
but efficient sampling procedures. The resulling process possesses some powerful
convergence properties in the presence of noise; it is nonparamelric and, despite ils
generalily, is efficient in the use of observations. The approach seems quite promising
as a solution to many of the problems of experimental sysiem optimization.
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JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 5, 150-167 (1962)

Surprise twist!
(KUSh ner’ 1 962) A Versatile Stochastic Model of a Function of

Unknown and Time Varying Form
HaroLD ]. KUSHNER

Massachusetts Institute of Technology,
Lincoln Laboratories, Lexington 73, Massachusetts

Submitted by Lotfi Zadeh

Properties of a random walk model of an unknown function are studied.
The model is suitable for use in the following (among others) problem.
Given a system with a performance function of unknown, time varying,
and possibly multipeak form (with respect to a single system parameter),

and o a 1) N On NTIOTMNA ON _avallan a alan £ N al-ln 3IMNn

of the function at selected parameter settings, then determine the suc-
cessive parameter settings such that the sum of the values of the observa-
tions is maximum, An attempt to avoid the optimal search problem
through the use of several intuitively reasonable heuristics is presented.




Objective Model
(Kushner, 1962)

e Wiener process prior
e additive Gaussian noise

X(1)

VAR X (1)




Policy desiderata (Kushner, 1962)

e sample densely

1. As N (the total number of observations) tends to infinity, every region
of greater than zero size is sampled at least once.

2. For large N, the initial observations will tend to be information gather-
ing (or play the long shot) and be taken near the point of maximum curve
variance.

3. 'The final observations are taken at points where the expected “pay
off”’ (in whatever sense the observations pay off) will be maximum.
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Policy desiderata (Kushner, 1962)

e sample densely
e ecxplore more at the beginning of search

1. As N (the total number of observations) tends to infinity, every region

: | . & ledLat | ‘

2. For large N, the initial observations will tend to be information gather-
ing (or play the long shot) and be taken near the point of maximum curve
variance.

3. 'The final observations are taken at points where the expected “pay
off”’ (in whatever sense the observations pay off) will be maximum.
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Policy desiderata (Kushner, 1962)

e sample densely
e explore more at the beginning of search
e exploit more at end of search

1. As N (the total number of observations) tends to infinity, every region
of greater than zero size is sampled at least once.

2. For large N, the initial observations will tend to be information gather-
ing (or play the long shot) and be taken near the point of maximum curve
variance.

3. 'The final observations are taken at points where the expected “pay
off”’ (in whatever sense the observations pay off) will be maximum.

41



Policies (Kushner, 1962)

Policy B: probability of improvement (will see again)

B. Sample at the ¢ point (£) at which (e = (NN, n) is a positive sequence)

X,
PX,>X* =1~ (\/V;;() (3.2)
t

1S maximum.
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Policies (Kushner, 1962)

Policy A: upper confidence bound!

A. The location of every observation is selected on the basis of a balance
between properties 2 and 3. The simplest such balance is a linear weighing.
We select the point at which

VVar X, + f(N, ) (X, — £%) (3.1)

1S maximum.
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As far as | can tell...

upper confidence bound?
probability of improvement?
expected improvement?

knowledge gradient?

Harold Kushner, 1962
Harold Kushner, $364 1962
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Further Development (Kushner, 1964)

H. J. KUSHNER

RIAS, Inc.,
Baltimore, Md.

e same model

probability of improvement
(what happened to UCB?)

A New Method of Locating the Maximum
Point of an Arbitrary Multipeak Curve
in the Presence of Noise’

A versatile and practical method of searching a parameter space is presented. 71heo-
retical and experimental resulls illustrale the usefulness of the method for such problems
as the experimental optimization of the performance of a system with a very general
multipeak performance funclion when the only available information is noise-distrib-
uted samples of the function. At present, its usefulness is resiricted to oplimization
with respect to one system parameter. The observations are taken sequentially; but, as
opposed to the gradient method, the observation may be located anywhere on the pa-
rameler interval. A sequence of estimates of the location of the curve maximum is gener-
ated. The location of the mext observaiion may be inlerpreted as the location of the
most likely competitor (with the current best estimale) for the location of the curve
maximum. A Brownian motion stochastic process is selected as a model for the un-
known function, and the observations are interpreled with respect to the model. The
model gives the results a simple intuitive interpretation and allows the use of simple
but efficient sampling procedures. The resulling process possesses some powerful
convergence properties in the presence of noise; it is nonparamelric and, despite its
generalily, is efficient in the use of observations. The approach seems quite promising
as a solution to many of the problems of experimenial system optimization.



Very thoughtful! (Kushner, 1964)

60+
e very practical -
t) 40}
e computational notes
. 20|
e careful scheduling of *
improvement
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Fig. 4 Experimental results with no observalion noise; localions of observations



Very thoughtful! (Kushner, 1964)

e very practical

e computational notes
e scheduling of
improvement
thresholds

e handling noise
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Fig. 7 Experimental results with observation noise
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Aside: Gauss-Markov models

Y(tz)oo

o v/9)=9
- y(1}e 8
< 84
Y(t)ee
6 ~
P ™ >~ v(4)=8
&
29

VAR X (1)

0 1 23 45678 90 n x

'l t P

Wiener process (Kushner) OU process (Saltyanis)



Okay but this is El right? (Mockus 1972)
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Nope, knowledge gradient! lol
(Mockus 1972)

One of the simplifications for the solution of the equations (2)
is "one-stage” method [1] [3] when at each stage it is assumed that
the following observation is the last one. In such a case the
sequence of observations is defined by the equations

Efu(zn, f(Xnei) Xnoa)1Z 0} 2| min|E{u(z ,,f(x), )z}

Xe A
where

U('Znyi):ln’n: E {J‘(X)’Zn+4}, Nn=0, . ,N.
Xe
The one=-st yesian method converges to the minimum of any

continuous function under the conditions of theorenm 1.
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Maximum of posterior mean occurs at observation location...



As far as | can tell...

upper confidence bound?
probability of improvement?
expected improvement?

knowledge gradient?

Harold Kushner, 1962
Harold Kushner, $364 1962

Jonas Mockus, 1972
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What about EI? (Saltyanis, 1971)

ONE METHOD OF MULTIEXTREMUM OPTIMIZATION
V. R. Shaltyanis

Avtomatika i Vychislitel'naya Tekhnika, Vol. 5, No. 3, pp. 33-38, 1971
UDC 62-505
A nonlocal optimization method is proposed which utilizes all the information on the results of

tests. The assumptions made lead to an algorithm which is optimum on average for one optimiza-
tion step. Results of experimental investigations of the algorithm are given.

2. Choice of the loss function. Henceforth we will consider search for the minimum value of the tar-
get function, our assumption being that the treatment of the roblem will be similar. The
smallest known value of the target function will be denoted by |w,=minw; Fhe effectiveness of the effective

j=ip

ness of the (p + 1)-th trial will be measured by the difference Aw “-wo- wp+1, while the average effec-

tiveness will be measured by the mathematical expectgtionl“[Apr]P+l P



Expected Improvement
(Saltyanis, 1971) T

e OU process prior on objective FE RGN A
function

e experiments in up to 32 dimensions! - ;

e very familiar comparison to random /-
search... o

Fig. 3. The quantity wp as a function of

the number of tests p: 1) Monte Carlo
method; 2) proposed method.



As far as | can tell...

upper confidence bound?
probability of improvement?
expected improvement?
knowledge gradient?

Harold Kushner, 1962
Harold Kushner, $364 1962
Saltyanis, 1971

Jonas Mockus, 1972
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Thank you!



