
Bayesian optimization 
needs better deep learning

or

Some fun antibiotic design 
stuff and how it could be 

way better.
Jacob Gardner, University of Pennsylvania
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Mine AMPs from extinct mammals

Bayesian optimization

Motivating Example: Antimicrobial Peptides

“Portfolio risk”
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The Anatomy of a Result Plot in this Space

Tons of evaluations,
large batch size.

Objectives defined
over discrete structures

like molecules.

RL, GAs, few shot 
generative

modelling all 
competitive.



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output

GP Surrogate



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output

GP Surrogate



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output

GP Surrogate



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output

GP Surrogate



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output

GP Surrogate

256-1024 dimensions



Challenge 1: Discrete, Structured

Generative ModelLatent Space Output

GP Surrogate

256-1024 dimensions

Our paper (NeurIPS 2022):
• Use high dim. BO (local BO)
• Joint ELBO over VAE and SVGP:

ℒjoint = 𝔼Enc(z∣𝑥) ℒsvgp 𝜃GP, 𝜃enc; 𝒚, 𝒁 + ℒVAE 𝜃enc, 𝜃dec; 𝑿

Expected supervised loss
(for data that has labels)

Typical VAE loss
(for data that has no labels)
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Challenge 2: High Throughput

Generative ModelLatent Space Output

GP Surrogate

(Maddox et al., 2021; Vakili et al., 2021;
Maus et al., 2022; Stanton et al., 2022;

Moss et al., 2023) 

(NeurIPS 2024)
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Train SVGP, compute EI Exact EI

argmax ∫ 𝑢 𝒙, 𝑓;𝒟𝑡 𝜋 𝑓 𝒟𝑡 𝑑𝑓

Posterior expected utility

is not approximated by1. 𝑞𝜆 𝑓 ≔ argmax ℒELBO(𝜆)

2. argmax ∫ 𝑢 𝒙, 𝑓; 𝒟𝑡 𝑞𝜆 𝑓 𝑑𝑓

“first approximate the posterior,

Then just plug that in.”

Suggestion: SVGPs are bad for BO because they aren’t designed to be 
good for it.

Why not just approximate 
this maximization 

directly?



Exact EIJoint model selection
+ acquisition (EULBO)

Idea: directly lower bound exact 
EI instead,

Expected Utility Lower Bound 
(EULBO). Use

for model selection and 
acquisition jointly. (Flavor of loss calibrated VI;  Lacoste-

Julien et al., 2011)

ℒEULBO = ℒELBO + 𝔼𝑞𝜆 𝑓 [log 𝑢(𝒙, 𝑓;𝒟𝑡)]

After derivation:

Challenge 2: High Throughput



ELBO

ELBO + Moss et al., 

EULBO (EI, KG)
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Challenge 3: Portfolio Risk
(AISTATS 2023)

Idea: Find 𝑀 solutions, all pairwise diverse:

= argmax𝑓(𝑥)

= argmax𝑓(𝑥) 𝑠. 𝑡. 𝛿 , ≥ 𝜏

= argmax𝑓(𝑥) 𝑠. 𝑡.

𝛿 , ≥ 𝜏

𝛿 , ≥ 𝜏
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Finding Diverse 
Solutions

TR 1

TR 2

TR 3

Unconstrained

Constrained
by TR1

Constrained
by TR1 and TR2
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Antibiotics
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Antibiotics – some 
stats

• 10 template peptides from 10 extinct organisms, optimize 10 diverse variants of each.
• 100 total peptides.
• 68% success rate in vitro, 6/8 tested working in vivo (although lower sample here)
• Two were stronger than control antibiotics in mice.

• Virtual screening (e.g., Stokes et al., 2020; Liu et al., 2023): 3-5% success rate is common.

Bayesian optimization in a latent space is quite encouraging compared to virtual screening, purely
generative approaches, ….
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Example 1: Sparse BO in 
RNA

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5

mRNA 1 mRNA 2 mRNA 3

Brain Liver Muscle

Protein 1 Protein 2



Example 1: Sparse BO in 
RNA

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5

Bayesian optimization over red introns  + Exons 1-3

Maximize inclusion of orange exon in brain, minimize in all other tissues.

Experimentally: relatively few locations in sequence involved in splicing control.
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Example 1: Sparse BO in 
RNA

Output token

L
a
t
e
n
t
 
t
o
k
e
n

Step 1: Make output tokens sparse in latent tokens.

Step 2: Just run e.g. SAASBO

If we want to use BO Algorithm X, the latent 
space needs to display 

the advantages that BO Algorithm X exploits.
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What can we be doing 
better?

CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1

Generative Model

Molecule in. Molecule out.

Not where the knowledge is.

Make a version of this extinct peptide that kills A. baumannii

Measurable, data exists.

Make a version of this peptide that kills A. baumannii via membrane depolarization.



What can we be doing 
better?

CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO

Generative Model

Molecule in. Molecule out.

Not where the knowledge is.

Make a version of this extinct peptide that kills A. baumannii

Measurable, data exists.

Make a version of this peptide that kills A. baumannii via membrane depolarization.

Thermostability? Cytotoxicity?



Example 2: People talk 
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CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO

Hydroxychloroquine is an anti-malarial drug commonly used in rheumatologic or dermatological conditions. Its use is 

partly due to its good safety profile; however, it is estimated that up to 7.5% of long-term users may develop 
retinal toxicity. [1] The mechanism of drug toxicity is still controversial. Hydroxychloroquine tends to accumulate in 
pigmented tissues such as retinal pigment epithelium (RPE), inhibiting the activity of anionic transporter 1A2 
(OATP1A2) . [2] Another theory suggests that the drug accumulates in the photoreceptors, leading to 

secondary degeneration of the outer nuclear layer and, subsequently, of RPE. [3] Currently, it is hypothesized that 

hydroxychloroquine accumulates primarily at the level of the ganglion cell layer but its implications are still unknown. 
[4] Although usually asymptomatic, retinal toxicity may be associated with photosensitivity and presence of scotomas.'

Example 2: People talk 
about drugs.



C1[C@@H]([C@H](O[C@H]1N2C=C(C(=O)NC2=O)C(F)(
F)F)CO)O

Example 2: People talk 
about drugs.

'Shitara and colleagues suggest that adverse effects caused by trifluridine/tipiracil might be easier to manage than 

those caused by immune checkpoint inhibitors, and underline this as a possible benefit of trifluridine/tipiracil. 

Although this hypothesis might be true, grade 3 or worse adverse events occurred in 267 (80%) of 335 patients 
given trifluridine/tipiracil in this trial, compared with 137 (42%) of 330 patients given nivolumab in the 

ATTRACTION-2 trial. 2 Compared with previous trials of trifluridine/tipiracil, the number of adverse events seems to 

be high in the TAGS study. For example, in the RECOURSE-2 trial, 4 in a population with pretreated metastatic 
colorectal cancer, 69% of patients given trifluridine/tipiracil had grade 3 or worse adverse events.'



CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO

Example 2: People talk 
about drugs.



Example 2: People talk 
about drugs.



CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO

Training

“Hydroxychloroquine tends to accumulate in 
pigmented tissues such as retinal pigment epithelium 
(RPE)”

Example 2: People talk 
about drugs.

+ e.g. CLIP objective.



Latent Space Output

Testing

This peptide’s primary 

mechanism of action is 
membrane depolarization. It 
melts at 65 °C.

Example 2: People talk 
about drugs.
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Conclusion

Bayesian optimization is great, quite possibly even state of the art for design problems in (bio)chemistry.

The representations of molecules that we’re searching through are incredibly naïve. 

The next big steps in this space might not be about the 
surrogate model, the acquisition function, or most of the other 
things you might find in my own methods sections.


