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1 Introduction

As experimental tools in the physical and life sciences become increasingly sophisticated and costly,
there is a need to optimize the choice of experimental parameters to maximize the informativeness of
the data and minimize cost. When designing an experiment, there is often a choice among a suite of
data collection modalities or instruments with varying fidelities that trade off between accuracy and
cost. For example, biologists have access to a range of tools to study living tissues, from state-of-the-
art yet expensive technologies for mapping the molecular makeup of individual cells to more dated
yet cheap tools to measure the aggregate molecular composition of the tissue’s cells. Analyzing the
tradeoff between high-fidelity, high-cost measurements and low-fidelity, low-cost measurements is
often difficult due to complex data collection procedures and budget constraints.

Multi-fidelity methods combine multiple models of varying fidelity to accelerate computational
algorithms. Multi-fidelity methods have been proposed for applications such as Bayesian optimization
[3, 13, 17, 20, 24, 28], Bayesian quadrature [10, 29], Bayesian inference algorithms [4–6, 8]. Notably,
several multi-fidelity extensions of Gaussian process (GP) models have been proposed. Most of
these approaches take the form of a multi-output GP, where each output corresponds to a fidelity, and
the relationship between fidelities is captured in the kernel function. In particular, common multi-
fidelity GP approaches include using the linear model of regionalization (LMC, [19]), autoregressive
models [18], and deep GPs [7] (see Brevault et al. [3] for an overview). In the field of experimental
design, a handful of multi-fidelity models have been proposed to select among a panel of data sources
with varying fidelities [11, 12].

Despite these developments, most existing approaches for multi-fidelity modeling and experimental
design are tied to specific data modeling choices and therefore may constrain the analyst to a specific
choice of model. Moreover, for GP models, choosing among existing multi-fidelity approaches
induces a tradeoff between computational tractability and flexibility in modeling the fidelities’
relationships. In particular, while the LMC-based approach to multi-fidelity GPs is computationally
simple, it assumes a symmetric relationship between fidelities, which is unrealistic in most settings
where there is a natural preference for high-fidelity measurements. However, using multi-fidelity
methods that allow for more complex fidelity relationships require more demanding computation.

We propose an approach for designing experiments using a Bayesian power posterior [14, 16, 22, 27],
which naturally accounts for varying fidelities by using a fractional power to discount the likelihood of
low-fidelity observations. This approach—termed a multi-fidelity posterior—was recently proposed
in the context of Bayesian online change point detection [15]. We apply this in the context of
information-based objectives for design problems using expected information gain (EIG) (a.k.a.
mutual information). Concretely, we propose a multi-fidelity expected information rate (MF-EIR)
objective, which measures the expected information gain with respect to the multi-fidelity posterior,
while accounting for the cost of information. Our approach using power posteriors is applicable to a
large class of probabilistic models, allowing for multi-fidelity experimental design beyond GP-based
modeling approaches. The implementation of the power posterior is conceptually straightforward,
and algorithms for approximate Bayesian inference can be leveraged. We demonstrate our approach
through a simulation study with a GP regression model and an application to a genomics experiment.
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2 Multi-fidelity Bayesian experimental design

We consider a sequential experimental design setting with T iterations. Let X denote the design space.
The task on iteration t is to choose a design xt ∈ X given data from the first t− 1 iterations, which
will yield an observation yt. Intuitively, the goal in choosing the design is to maximize the chances of
receiving an informative experimental result. To do this, a utility function must be chosen that will be
optimized; in this work, we will explicitly consider the expected information gain (EIG) objective,
but our approach can be applied more generally. Finally, the cost of gathering an observation is often
expensive. Thus, the goal is to use observations of varying fidelities to reduce the computational cost
of experimental design while maintaining informativeness.

In the multi-fidelity setting, each design xt has an associated fidelity ζt, which is a known measure
of the expected quality or precision of the observation to be yielded from the design. For instance,
the fidelities could correspond to different collection instruments with varying noise levels and costs.
Each fidelity ζt takes values in the set Z := {ζ(1), . . . , ζ(K)}, where for all k, ζ(k) ∈ (0, 1] and K is
the number of fidelities. Larger ζt ∈ Z correspond to higher fidelity observations. Let c : Z×X → R
denote a cost function, where observing a design x with fidelity ζ incurs cost c(ζ, x); we assume the
cost for a fixed design increases with fidelity. In most applications, a higher fidelity design induces a
larger cost.

2.1 Multi-fidelity expected information rate

Before introducing the proposed multi-fidelity utility function, we first review the idea of a multi-
fidelity posterior [15], which uses a tempered likelihood to represent how noisy a particular data
source is. Let Dt := {(xn, yn)}tn=1 be the observations with fidelities {ζn}tn=1. Consider a Bayesian
model with parameter of interest θ and prior π(θ), and let pθ(y) := p(y|θ, x) denote the likelihood
of an observation y with design x. Given a set of observations Dt measured at fidelities ζ1:t, the
multi-fidelity posterior is

π(θ|Dt, ζ1:t) ∝ π(θ)

t∏
n=1

pθ(yn)
ζn . (1)

When ζn < 1, the nth likelihood term is downweighted, and the posterior becomes less concentrated.
Thus, a smaller ζn has the effect of a higher noise level for that sample. Re-weighting terms in the
likelihood has been considered in many other contexts in the Bayesian literature [2, 14, 16, 22, 26, 27].

Incorporating the fidelity generalizes the design task described above: a fidelity must also be chosen
on each experimental iteration in addition to the design. This naturally yields the general multi-fidelity
form of the EIG for a design (xt, ζt) using the multi-fidelity posterior defined in Equation 1:

MF-EIG(xt, ζt) = H[π(θ|Dt−1, ζ1:t−1)]− Eyt

[
H[π(θ|Dt−1, xt, yt, ζ1:t)]

]
. (2)

Finally, we incorporate costs into the design criterion by penalizing high-cost fidelities. The final
objective, which we call the multi-fidelity expected information rate (MF-EIR), is given by

(x⋆
t , ζ

⋆
t ) = argmaxxt,ζt MF-EIG(xt, ζt)/c(ζt, xt), (3)

where Equation 2 is divided by the cost of observing design xt at fidelity ζt. Thus, the multi-fidelity
criterion (Equation 3) can be interpreted as the expected information gain per unit of cost.

2.2 Examples

Bayesian linear regression. Consider the Bayesian linear regression model with X ⊆ Rp,

y = x⊤β + ϵ, β ∼ N (0,S0), ϵ ∼ N (0, σ2). (4)

When σ2 is known, the multi-fidelity posterior for β takes the form β|Dt ∼ N (mt,St), where
mt = (X⊤DtX + S−1

0 )−1X⊤Dty, St = σ2(X⊤DtX + S−1
0 )−1, Dt = diag(ζ1, · · · , ζt), and X

is the design matrix. Suppose we have observed t samples {(xn,yn, ζn)}t−1
n=1 and are tasked with

choosing the next design (xt, ζt). To do so, we maximize the MF-EIG, which is given by

MF-EIG(xt, ζt) =
1

2
log(ζtσ

−2x⊤
t S0xt + 1− ζtσ

−2xtS0X
⊤(XS0X

⊤ +Dt−1)
−1XS0xt).
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(a) Iteration t = 1

(b) Iteration t = 2

(c) Iteration t = 3

(d) Iteration t = 4

Figure 1: Multi-fidelity EIG and EIR for GP regression. The black dots denote observations,
and the gray line and band denote the predictive mean and twice the predictive standard deviation,
respectively. The left column shows the MF-EIG and the right column shows the MF-EIR.

Gaussian processes. Consider the GP regression model,

y = f(x) + ϵ, f ∼ GP(0, k(·, ·)), ϵ ∼ N (0, σ2). (5)

In this case, raising the Gaussian likelihood to a power ζ simple scales the variance as σ2/ζ.
This provides a straightforward route to computing the MF-EIG for GP regression. Let D =
diag(σ2/ζ1, · · · , σ2/ζt−1), let k⋆ = [k(x1, xt), · · · , k(xt−1, xt)]

⊤, and let K be the matrix whose
ij’th element is [K]ij = k(xi, xj) for i, j = 1, . . . , t− 1. The MF-EIG is then

MF-EIG(xt, ζt) =
1

2
log(ζt/σ

2k(xt, xt) + 1− ζt/σ
2k⊤

⋆ (K+D)−1k⋆).

3 Experiments

Simulation studies. We first demonstrate our approach on a one-dimensional synthetic example,
where the outcome y is a noisy draw from a GP (Equation 5). The design space is X = [−5, 5], and
we consider fidelities Z = {0.4, 0.6, 1.0}. On each step of experimental design, we choose the fidelity
and design that maximize the MF-EIR (Equation 3). For this experiment, we fix the noise variance
to σ2 = 0.01 and construct cost functions as c(ζ, x) = exp{gζ(x)}, where gζ ∼ GP(ζ, k(·, ·)) is a
fidelity-specific cost function. We ran the experiment forward for T = 4 iterations and examined the
MF-EIG and MF-EIR on each iteration (Figure 1). In Figure A.1 we compare the MF-EIG with a
single-fidelity EIG. We find that our proposed MF-EIR provides an informative view of the trade off
between the fidelity-specific information gain and the cost of running each experiment. Moreover, we
find that our approach to multi-fidelity experimental design yields substantially different behavior
than the analogous approach to single-fidelity experimental design using EIG.

Application to spatial transcriptomics. We next apply our approach to an experimental design
problem in genomics in which a scientist has extracted a biological tissue of interest (brain, heart,
lung, etc.) and is now tasked with profiling the spatial organization of gene expression across this
tissue. Most current technologies for spatially-resolved transcriptomic profiling [9, 21, 23, 25] require
taking cross-sections of the tissue and then performing data collection on each section separately.

We consider the problem of deciding which tissue cross-sections to collect and analyze in order to
maximally understand the spatial organization of its gene expression. For simplicity, we consider
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Figure 2: Application to genomics experiment. Left: Cross-section of mouse brain tissue. Each
point is colored by the expression of the gene PCP2. The red dashed line shows one candidate design.
Middle: The observations that would be revealed after taking the example design in the left panel.
Right: The designs selected by our multi-fidelity experimental design approach.

the expression of a single gene. We model an outcome y ∈ R (the level of gene expression) across a
spatial domain X ⊂ R3 (the biological tissue) with a GP regression model. The observations consist
of pairs (x, y), where x ∈ R3 is a spatial location and y is the gene expression at that location. Several
technologies exist to collect such data, each offering a different spatial resolution and precision of
gene expression measurements. For each cross-section collected, we choose a technology to use to
collect the data, each with its own cost and fidelity.

We leverage publicly-available data from the 10x Genomics Visium platform [1], which contains
spatially-resolved gene expression data from mouse cortex. We make several simplifying assumptions.
First, due to the lack of available data for all possible tissue cross-sections, we consider one-
dimensional cross-section designs through a two-dimensional tissue (see Figure 2), rather than two-
dimensional cross-sections through a three-dimensional tissue. Second, we assume the availability
of six gene expression profiling technologies, Z = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, where the fidelity
corresponds to the spatial resolution that is artificially induced by subsampling the respective fraction
of points from a cross-section. Finally, we assume that chosen cross-section designs can intersect one
another; in reality this would not be possible due to the fragmenting of the tissue.

We specify the cost of a slice to be equal to the number of points observed on that slice (after
fidelity-specific subsampling, see Appendix A.2 for details). We run experimental design for T = 5
iterations, choosing the design with maximum MF-EIR on each step, and we visualize the selected
designs. We find that our approach initially selects low-fidelity, low-cost cross-sections of the tissue
near the boundary for the first three iterations. On the last two iterations, it selects high-fidelity,
high-cost cross-sections. This behavior suggests that the MF-EIR is effectively trading off fidelity,
cost, and information gain across the design process. This experiment demonstrates the flexibility
of our proposed approach and serves as a proof of concept for the application of our method to
real-world experimental design settings.

4 Discussion

In this work, we propose an approach to designing experiments in which multiple fidelities are
available. Our approach, based on tempering the likelihood of each observation with its fidelity, is
conceptually straightforward and extensible to a myriad of modeling choices. We demonstrated our
approach through a simulation study of GP regression and an application to a genomics experimental
design setting.

There are a number of limitations and opportunities for future work with our proposed approach.
While the multi-fidelity posterior is generally applicable across probabilistic models, it only allows one
way for the fidelity to interact with the model (via tempering the likelihood). In many experimental
design settings, we may have more information about the data collection process that could be
incorporated into the model. For example, in the genomics setting, the level of spatial resolution of a
measurement could be encoded directly into the model. In future work, we will apply the approach to
more complex models that require the use of approximate Bayesian inference algorithms. Finally, it
would be fruitful to explore connections to other applications, such as Bayesian optimization and
Bayesian quadrature. The multi-fidelity approach explored here for EIG can be likewise applied to
the acquisition functions used commonly in these other applications.
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A Additional experimental details

A.1 GP example: comparison with single-fidelity EIG

In Figure A.1, we compare the behavior of the single-fidelity EIG (top row) with the multi-fidelity
EIG (bottom two rows) on T = 3 iterations. We considered a similar setup to the figures in the main
document, but with different cost functions and fidelities Z = {0.1, 0.5, 1.0}. For all experiments, a
squared exponential kernel was used.

A.2 Genomics application

This section provides a more detailed formalization of the experimental design problem for the
genomics application. We consider a spatial genomics dataset consisting of pairs (x, y), where
x ∈ R3 is a spatial location and y is a scalar outcome at this location (i.e., the level of expression of a
gene at this location). We denote a dataset of t such pairs as {(xi,yi)}ti=1.

Suppose our goal is to profile a tissue, organ, or entire organism whose cells lie in the spatial domain
X ⊂ R3. A spatial genomics experiment requires collecting a slice from the tissue of interest. This
slice is a two-dimensional cross-section of X . We represent a two-dimensional plane with its normal
vector β ∈ R4 and denote the set of points on a cross section as

Xβ = {x ∈ X : (1,x⊤)⊤β = 0}.

The design space is thus the set of cross-sections parameterized by β.

To incorporate varying fidelities into the experiment, we artificially create varying spatial resolutions
of measurements. Specifically, when a fidelity ζ and design β is chosen, we subsample the set Xβ

(without replacement) to have ⌈ζ|Xβ|⌉, where |Xβ| is the cardinality of the set of points observed
when taking the cross section defined by β. We then define the cost function in these experiments as
the number of points observed after subsampling, c(ζ,β) = ⌈ζ|Xβ|⌉.

In our experiments, due to the lack of available data for three-dimensional data, we consider a
two-dimensional spatial domain where the design space is the set of one-dimensional cross-sections
through that domain.

A.3 Code availability

A Colab notebook for the simulation experiment is available at https://tinyurl.com/
mfed-colab.
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