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Hierarchical Gaussian Process: enables
efficient calculation of failure
probability for partially defined
performance functions

Summary

▶ Partially defined system performance introduces

discontinuous behaviour ⟹ poor performance of

Gaussian Process active learning reliability algorithms

which assume continuous performance

▶ Introduce a Hierarchical Gaussian Process composed

of two GPs to model partially defined performance.

▶ Active learning with Hierarchical Gaussian Process

outputs better calibrated probabilities ⟹ obtains

higher accuracy and superior convergence

Performance Function GP model

F
u
lly

D
e
fi
n
e
d

Pass

Fail

Pass

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

g(
x)

Data
Mean
Confidence

3

P
a
rt
ia
lly

D
e
fi
n
e
d

Pass

Fail

Pass
Undefined

Pass

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

g(
x)

Data
Mean
Confidence

7

Figure 1: AK-MCS applied to a masked partially defined

performance function and a fully defined performance

function.

Adaptive Kriging Monte Carlo Simulation

▶ Aim to calculate 𝑝𝑓 = 𝔼𝑝(x)𝟙[𝑔(x) < 0], where 𝑝(x) is
given distribution of environmental variables, and 𝑔(x)
is system performance.

▶ GP regression for 𝑔(x) and iteratively query system on

most likely misclassified points with AK-MCS.

Hierarchical Gaussian Process Model

▶ Introduce a hierarchical Gaussian Process model of the system

performance in active learning loop:

1. Classification GP to predict if y is NaN-valued

2. Regression GP to predict numerical value of y

▶ Failure and misclassification probabilities can be readily computed:

𝑝(𝑦∗|x∗, 𝒟) = {
𝑝(𝑦∗|x∗, 𝒟, 𝑦∗ ≠ NaN) 𝑝(𝑦∗ ≠ NaN|x∗, 𝒟) if 𝑦∗ ≠ NaN,
𝑝(𝑦∗ = NaN|x∗, 𝒟) if 𝑦∗ = NaN,

Regression GP

Classification GP

𝑝𝑓 ≈ 𝔼𝑝(x∗)𝟙[𝑝(𝑦∗ < 0, 𝑦∗ ≠ NaN|x∗, 𝒟) > 0.5]

x∗

Classification GP

Regression GP y∗ = NaN

y∗

y∗ ̸= NaN y∗ = NaN

Figure 2: A Hierarchical Gaussian Process Model.
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Figure 3: AK-MCS with hierarchical GP on masked cosine function.
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(a) Masked GP
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(b) Hierarchical GP

Figure 4: Trained Models. Hierarchical model produces much better calibrated

probabilities.
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Autonomous Driving Example Results

▶ Task: Autonomous Driving T-junction merge scenario

with vehicle trajectories parameterised by random

variables

▶ Performance:

▷ longitudinal distance in lane
▷ undefined if ego doesn’t merge

Table 1: Number of iterations was capped at 150 and

methods hitting the cap are marked with did not terminate

(DNT). Results shown as mean (standard deviation) for 5

repeats. Our method terminates after an appropriate

number of iterations.

Methodology𝑝𝑓 F1score # Evaluations

Analytic 0.0382 N/A N/A

hGP (ours) 0.038 (0.0019) 1 (0.0013) 81 (21)

Masked GP 0.037 (0.0041) 0.92 (0.063) DNT

GPC 0.035 (0.0029)0.98 (0.0049)DNT
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Figure 5: Convergence of 𝑝𝑓 and average precision.

Baseline models converge erraticly, but Hierarchical GP

obtained high average precision and the predicted

misclassification probability decreases quickly.


