An Active Learning Reliability Method for Systems with Partially Defined Performance Functions

Romain Mueller Jonathan Sadeghi Five Al Ltd. jon.sadeghi@five.ai

Hierarchical Gaussian Process: enables efficient calculation of failure probability for partially defined performance functions

Summary

- Partially defined system performance introduces discontinuous behaviour \implies poor performance of Gaussian Process active learning reliability algorithms which assume continuous performance
- Introduce a Hierarchical Gaussian Process composed of two GPs to model partially defined performance. Active learning with Hierarchical Gaussian Process outputs better calibrated probabilities \implies obtains higher accuracy and superior convergence

Figure 1: AK-MCS applied to a masked partially defined performance function and a fully defined performance function.

Adaptive Kriging Monte Carlo Simulation

- Aim to calculate $p_f = \mathbb{E}_{p(\mathbf{x})} \mathbb{1}[g(\mathbf{x}) < 0]$, where $p(\mathbf{x})$ is given distribution of environmental variables, and $g(\mathbf{x})$ is system performance.
- GP regression for $g(\mathbf{x})$ and iteratively query system on most likely misclassified points with AK-MCS.

John Redford

Hierarchical Gaussian Process Model

Introduce a hierarchical Gaussian Process model of the system performance in active learning loop: Classification GP to predict if y is NaN-valued 2. Regression GP to predict numerical value of y Failure and misclassification probabilities can be readily computed:

$$\begin{array}{l} \textbf{Regression GP} \\ p(y_* | \mathbf{x}_*, \mathcal{D}) = \begin{cases} p(y_* | \mathbf{x}_*, \mathcal{D}, y_* \neq \text{NaN}) p(y_* \neq \text{NaN}) \\ p(y_* | \mathbf{x}_*, \mathcal{D}) = \end{cases} \end{cases}$$

$$\left(\begin{array}{c} p(y_* = \mathsf{NaN} | \mathbf{x}_*, \mathcal{D}) \\ \end{array}\right)$$

Classification GP

$$p_f \approx \mathbb{E}_{p(\mathbf{x}_*)}\mathbb{1}[p(y_* < 0, y_* \neq \mathsf{NaN}]$$

Figure 2: A Hierarchical Gaussian Process Model.

Figure 3: AK–MCS with hierarchical GP on masked cosine function.

(a) Masked GP

Figure 4: Trained Models. Hierarchical model produces much **better calibrated** probabilities.

(b) Hierarchical GP

Table 1: Number of iterations was capped at 150 and methods hitting the cap are marked with did not terminate (DNT). Results shown as *mean* (standard deviation) for 5 repeats. Our method **terminates after an appropriate** number of iterations.

Figure 5: Convergence of p_f and average precision. Baseline models converge erraticly, but Hierarchical GP obtained high average precision and the predicted misclassification probability decreases quickly.

Iongitudinal distance in lane > **undefined** if ego doesn't merge