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Hierarchical Gaussian Process: enables
efficient calculation of failure
probablllty for partlally defined P> Introduce a hierarchical Gaussian Process model of the system

performance functions performance in active learning loop:
l. Classification GP to predict if y is NaN-valued

2. Regression GP to predict numerical value of y
P> Failure and misclassification probabilities can be readily computed:

Hierarchical Gaussian Process Model

<« < constant
approach
approach distance’ velocity

Regression GP

P Partially defined system performance introduces

discontinuous behaviour = poor performance of p(y.|x., D) = {p(y*x*, D, y, # NaN) p(y, # NaN|x,, D) !f y. 7 NaN,
Gaussian Process active learning reliability algorithms p(y. = NaN|x,, D) if y, = NaN,
which assume continuous performance | I Autonomous Driving Example Results
P Introduce a Hierarchical Gaussian Process composed Classification GP o | . .
of two GPs to model partially defined performance. pra Ey Lp(y, < 0,y, # NaN|x,, D) > 0.5] > Task: Autonomous Driving T-junction merge scenario
P Active learning with Hierarchical Gaussian Process * with vehicle trajectories parameterised by random
outputs better calibrated probabilities = obtains ) variables
higher accuracy and superior convergence / * / P Performance:
X > longitudinal distance in lane
> undefined if ego doesn’t merge
Performance Function ) GP model NN PR ) NN
g \ /\ Regression GP / y. = NaN / Table 1: Number of iterations was capped at 150 and
S ™ - = [ methods hitting the cap are marked with did not terminate
O v o / . / (DNT). Results shown as mean (standard deviation) for 5
% o _ . . . repeats. Our method terminates after an appropriate
T R Figure 2: A Hierarchical Gaussian Process Model. number of iterations.
.- X M 12 Methodologyp F,score # Evaluations
c N - Analytic 00382 N/A N/A
D o \ 0 2 - hGP (ours) 0038 (0.0019) 1(0.0013)  81(21)
2w\ 2 zZ Masked GP  0.037 (0.0041) 0.92 (0.063) DNT
= ] Ve N o GPC 0.035 (0.0029)0.98 (0.0049) DNT
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x X Figure 3: AK-MCS with hierarchical GP on masked cosine function. s
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Figure 1: AK-MCS applied to a masked partially defined
performance function and a fully defined performance
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Adaptive Kriging Monte Carlo Simulation
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P Aim to calculate p; = £, 1[g(x) < 0], where p(x) is

. . . . . . 0.4 9 DS 0.4 2 DS 0.4 b S ! .
given distribution of environmental variables, and g(x) Adyy %05 oo &S Adyy . "Cos 00 S Adyy . "Cos 00 S Baseline models converge erraticly, but Hierarchical GP
Sary Stary | ?’6 = Sary ¢ Larg | Y”b = Sary ¢ Larg | ?’b S '

IS system performance. obtained high average precision and the predicted

P> GP regression for g(x) and iteratively query system on (a) Masked GP (b) Hierarchical GP misclassification probability decreases quickly.

most likely misclassified points with AK-MCS. Figure 4: Trained Models. Hierarchical model produces much better calibrated

probabilities.



