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1 Introduction

Estimating the probability that the performance of a system is satisfactory under uncertain or variable
operating circumstances is an important step towards deploying such systems safely in the real
world. This is especially important in safety critical application such as autonomous driving, where
finding rare but catastrophic failures has been identified as a important challenge [1]. Powerful
active learning approaches based on Gaussian processes (GP) have been proposed as a solution to
this problem [2–7] and achieve state of the art performance (we describe related work in detail in
Section B). However, such approaches cannot be applied to problems where the performance of the
system may be undefined under certain specific circumstances, a situation which often occurs in the
autonomous vehicle domain [1, 8–10] (for a motivating example see Appendix A). Naïvely masking
away regions where the performance of the system is undefined would introduce discontinuities and
leads to poor performance since Gaussian processes with stationary kernels are not well suited to the
regression of discontinuous targets [11]. In this work, we extend these methods from first principles
to the case where the performance function can be undefined by using a hierarchical model (termed
hGP) for the system performance, where undefined performance is classified before the performance
is regressed. The code is available at https://github.com/fiveai/hGP_experiments/.

We consider a system whose performance is described by a function g : X 7→ R ∪ {NaN}, where
x ∈ X ⊆ Rk are random environmental variables affecting the system, g(x) < 0 denotes an
undesirable event (a failure), and g(x) = NaN is an event of unspecified performance. An undefined
value does not indicate that an undesirable event has occurred for a particular x, and therefore we
wish to classify these x differently to the failure events. The rate of failures is quantified using the
probabilistic threshold robustness (PTR) of the system, which we define as

pf =

∫
X

1 [g(x) < 0 ∩ g(x) ̸= NaN] p(x)dx, (1)

where 1 is the indicator function and p(x) is the probability density (mass) function of x [12]. Eq. (1)
represents the probability that the system is in the failure state, while disregarding the ‘uninteresting’
cases where the performance is undefined. Note that we are not attempting to model the distribution
of environment variables and treat p(x) as given. Estimating pf in Eq. (1) using a vanilla Monte
Carlo simulation can be computationally expensive since identifying a failure rate lower than ϵ will
typically require at least 1/ϵ tests [13]. In order to reduce the required number of samples, we use the
Adaptive Kriging Monte Carlo Simulation (AK-MCS) algorithm, a simple active learning technique
based on Gaussian processes which was shown to provide an extremely efficient evaluation of the
PTR measure for previously studied problems [2], and extend it to partially undefined performance
functions. We perform experiments comparing our proposed methodology to several naïve baselines
on problems for which the results are known analytically. We find that our approach produces a more
accurate estimation of pf and also that the surrogate model is a more accurate representation of the
true performance function.
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2 Approach

We modify the AK-MCS active learning algorithm by using a different Gaussian Process and
acquisition function to Echard et al. [2]. We use a hierarchical Gaussian process model for the rule
function, consisting of separate regression and classification Gaussian processes, and a modified
acquisition function which minimises the catastrophic event classification error to yield an optimal
surrogate model of the rule function. Otherwise our proposed algorithm proceeds in the same way
as the AK-MCS algorithm, i.e. an initial training set is chosen to train a Gaussian process, and
then subsequent evaluations of the performance function, g, are chosen iteratively by maximising a
function of the Gaussian process known as the acquisition function, which are then used to retrain
the Gaussian process. The algorithm terminates when the coefficient of variation (CoV) of the
failure probability computed using the Gaussian process is below some threshold, and the predicted
misclassification probability is also below some threshold. This algorithm is shown in Algorithm 1.

Let y∗ be the predicted performance for the test input x∗ ∈ X where y ∈ R ∪ {NaN}, and let
the dataset of training examples D = {(xi, yi)|i = 1, ..., n}. We model the predictive distribution
p(y∗|x∗,D) hierarchically as

p(y∗|x∗,D) =
{
p(y∗|x∗,D, y∗ ̸= NaN)p(y∗ ̸= NaN|x∗,D) if y∗ ̸= NaN,

p(y∗ = NaN|x∗,D) if y∗ = NaN,
(2)

where p(y∗|x∗,D, y∗ ̸= NaN) is the predicted regression distribution for y∗ at the test input x∗
given that y∗ is defined, and p(y∗ = NaN|x∗,D) is the predicted classification probability that y∗
is undefined for x∗. We model these distributions with separate GPs; for p(y∗|x∗,D, y∗ ̸= NaN)
GP regression is used, and for p(y∗ = NaN|x∗,D) GP classification is used. The conditional
prediction of the failure event can easily be calculated as p(y∗ < 0, y∗ ̸= NaN|x∗,D), which can be
used to define an acquisition function, pmisclassification(x), based on probability of misclassification of
y∗ < 0 ∩ y∗ ̸= NaN, as in Echard et al. [2]. We give more details about our modelling approach in
Appendix C. Finally, our hierarchical model Eq. (2) can be used to compute the failure probability as

pf ≈
∫
X

1[p(y∗ < 0, y∗ ̸= NaN|x∗,D) > 0.5]p(x∗)dx∗. (3)

The termination criteria for the AK-MCS algorithm will determine the error in the failure probability
computed using the Gaussian process in Eq. (3), in addition to bounding the error of the hierarchical
Gaussian process model. This ensures that the model is sufficiently accurate to be used by engineers
to make predictions about the behaviour of the system.

Algorithm 1: Hierarchical Gaussian Process PTR Active Learning Method
Input: GP prior GP(0, k), termination threshold η, model g(x)

Define proposal set S: sample nmc points from p(x∗).
Define initial design of experiments: sample nE points uniformly from S and evaluate with model
g(x) to define Ŝ = {(xi, yi)|i = 1, ..., nE}
while CoV > 0.1 do

while maxx pmisclassification(x) > η do
Train GP on Ŝ
Compute µ(x), σ(x), pnan(x) from hierarchical GP for all x ∈ S.
Choose most likely misclassified x: x∗ = argmaxx∈S pmisclassification(x)

Observe y∗ = g(x∗) and Add (x∗, y∗) to Ŝ
end while
Estimate pf using Monte Carlo simulation with Gaussian Process on S using Eq. (3)

Calculate CoV =
√

(1−pf )
pf |S|

Sample nmc points from p(x∗) and evaluate with model g(x) to add to S
end while

Output: Fitted hierarchical GP and pf computed using Eq. (3).
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3 Experiments

Benchmark tasks: We evaluate our methodology on two benchmark problems where the system
performance is partially undefined and for which pf can be calculated analytically:

• Toy function The system performance (plotted in Fig. 4a) is given by

g(x) =

{
NaN if 0.215 < x < 0.6,

cos(8x) otherwise,
(4)

where the uncertain variable x is distributed with p(x) = U [0, 1].
• Autonomous driving (AD) A model of an autonomous vehicle joining a main road at a T-

junction where the vehicle accelerates linearly at aego from stationary, whilst the approaching
vehicle travels from xa at va. The thresholded minimum lateral distance between the
autonomous vehicle and an approaching vehicle is given by the performance function

g(xa, va) =

{
NaN if dmin(xa, va) < dthreshold and |xa| < xlim,

dmin(xa, va)− dthreshold otherwise,
(5)

where dthreshold is a constant safe distance threshold, xlim is a upper limit of the percep-
tual range of ego, and the closest approach distance between the vehicles is defined as
dmin(xa, va) = max

(
−
(
xa + v2a/(2aego)

)
, 0
)

. A full derivation of the performance func-
tion and explanation of the physical variables and their associated distributions is provided
in Appendix A. Undefined values here represent scenarios when the autonomous vehicle
decides not to join the main road, and so the lateral distance along the road is undefined.

Baselines: The hierarchical GP (hGP) will be compared with the following baseline methodologies:

• Masked GP: AK-MCS [2] with a regression GP where NaN values are masked with positive
constant α > 0 , i.e.

g̃ =

{
g(x) if g(x) ̸= NaN,

α if g(x) = NaN.
(6)

• Active GP Classification (GPC): similarly to Kapoor et al. [14], we apply a GP classifier to
classify the event y∗ < 0 ∩ y∗ ̸= NaN and use this to replace the GP in AK-MCS.

Hyperparameters for each algorithm are shown in Appendix D. Metrics used to compare the models
are described in further detail in Appendix E.1 We repeat the experiments with different values of α
(α = 0.1, α = 0.5, α = 1.0) for the Masked GP in Appendix E.3, where no significant differences
are observed for different values of α (results for α = 1 are shown in this section).

Model Accuracy: Firstly we run each algorithm for 150 iterations, i.e. neglect the termination
criteria by setting η = 0, in order to study the accuracy of the models independently of the termi-
nation criteria. Fig. 1 shows the convergence of the failure probability and maximum predicted
misclassification probability for the models for the Toy and Autonomous experiments. In addition, in
Appendix E.2 the convergence of the failure probability (pf ) and F1score for the models is shown. We
observe that the convergence for the hGP is far faster than for the other models. All methodologies
obtain a value for pf consistent with the analytically computed value when considering the error
implied by the CoV. The convergence of pf and predicted misclassification probability for the masked
GP is erratic, which is indicative of the misspecification of the model. Visualising the fitted models
in Fig. 2, reveals that the low F1score and average precision are caused by the length scale for the
masked GP becoming extremely short due to the discontinuity in the masked performance function,
resulting in a large predicted variance and hence erroneous class scores. hGP outperforming GPC is
unsurprising, as the hGP utilises more information about the magnitude of the performance function
in order to make a more educated selection of the next point to query.

Overall, although all models eventually accurately estimate pf , the hGP clearly provides a more
accurate classification of the failure region, more stable training, and class probabilities which better
represent the state of knowledge given the available data.

Termination Criteria: We analyse the ability of the models to terminate the active learning loop
after an appropriate number of iterations by repeating the experiments in the previous section with
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Figure 1: Convergence of average precision and maximum predicted misclassification probability for
fitted GPs for the toy function and AD experiments. The shaded area represents the minimum and
maximum of 5 repeats, and the dark line represents the mean.
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Figure 2: Plotted models for both experiments. For regression GPs, one standard deviation prediction
bounds are shown for AD GPs as orange/blue surfaces and for the toy function GPs in shaded blue.
For classification GPs only the predicted probability is shown. The points represent training data.

the termination criteria enabled. Table 1 shows the number of samples, the pf , and F1score when
the algorithm terminates. Appendix E.2 shows additional properties of the models upon termination.
The hGP AK-MCS terminates with an accurate model in both experiments. For both experiments
we see that GPC eventually learns an accurate model but does not terminate, because the maximum
predicted misclassification probability remains high. In the toy function experiment the masked GP
terminates far too early while the F1score is very low compared to hGP. The masked AK-MCS does
not terminate for the AD experiment; the short length scale in the masked GP means that the predicted
variance is large and a large amount of iterations will be required to significantly reduce this. For the
AD experiment all models obtain the correct value of pf within estimated error, however the F1score
is much lower for the masked GP, suggesting the identified failure region is incorrectly located.

It is clear that due to the ability of the hGP to predict appropriate classification probabilities it is the
only model which can reliably terminate when the model is sufficiently accurate.

Table 1: Comparison of pf , F1score (F1), and number of evaluations (N. Eval.) for all methodologies.
N. Eval. includes the initial design of experiments (12 evaluations) and the number of iterations of
the active learning algorithm. Number of iterations was capped at 150 and methods hitting the cap
are marked with did not terminate (DNT). Mean and standard deviation for 5 repeats are shown.

Methodology pf Avg. (Std. Dev.) F1 N. Eval.

Toy function

Analytic 0.036906 N/A N/A
hGP (ours) 0.036 (0.0051) 1 (0.0011) 56 (3.4)
Masked GP 0.019 (0.0031) 0.66 (0.00013) 20 (3.2)
GPC 0.037 (0.0026) 0.99 (0.003) DNT

pf F1 N. Eval.

Autonomous Driving

0.0382 N/A N/A
0.038 (0.0019) 1 (0.0013) 81 (21)
0.037 (0.0041) 0.92 (0.063) DNT
0.035 (0.0029) 0.98 (0.0049) DNT
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A Motivating example

Consider the case of an autonomous vehicle waiting to join a road at a T-junction, where other
cars are travelling on the road at constant velocity. Assuming that the autonomous vehicle behaves
deterministically with respect to variables like the initial starting positions and velocities of the
vehicles, one could specify a measure of safe system performance, for example the distance of closest
approach between the autonomous vehicle and the other vehicles as a function of these variables.
Then an engineer could use an optimisation algorithm to find the conditions which cause the closest
distance to become dangerously small. However, in some cases the closest distance function could be
undefined because the autonomous vehicle never joined the road at all, for example if the autonomous
vehicle’s planner deems the situation to be unsafe. In scenario based testing of autonomous vehicles
such rule functions, which have the potential to be only partially specified, are common [1, 8–10].

A.1 Mathematical Model

We consider a vehicle moving in the nearside lane at a constant velocity va, which has starting
longitudinal position x(t = 0) = xa < 0 relative to the ego vehicle. The ego vehicle will perceive
the adversarial vehicle if the distance between the two vehicles is less than the limiting distance for
the sensor (xlim), otherwise a false negative detection will occur. The scenario will be considered
safe provided the distance between the vehicles in the same lane is no less than a threshold dthreshold,
corresponding to the stopping distance of a typical vehicle. Ego will attempt to merge into the
nearside lane and accelerate at its maximum velocity aego until it reaches va, however if ego perceives
that this action will result in a collision due to the position and velocity of the adversarial vehicle
then ego will not merge into the road and hence the longitudinal distance between the vehicles in the
lane will be undefined. This is shown in Fig. 3.

Modelling each vehicle as a particle moving in a one dimensional space, we can write the rule
numerically as

g(xa, va) =

{
NaN if dmin(xa, va) < dthreshold and |xa| < xlim,

dmin(xa, va)− dthreshold otherwise,
(7)

where we have defined the closest approach distance between the vehicles as

dmin(xa, va) = min
t∈[0,∞]

∣∣∣∣12aegot
2 − (xa + vat)

∣∣∣∣ = max

(
−
(
xa +

v2a
2aego

)
, 0

)
. (8)

A plot of the rule is shown in Fig. 4b. In order to ensure that the scale of the performance function
is appropriate for the GP hyperparameters we have chosen, we rescale the performance function by
dividing by 20 resulting in performance values of lower magnitude.

B Related Work

The PTR measure has recently become of interest in the robust optimisation literature [12], for
example Inatsu et al. [4] show how system designs can be adjusted to optimise the measure. The
measure has a much longer history in reliability engineering [15]. Moustapha et al. [6] and Teixeira
et al. [16] provide reviews of active learning methods for estimating this measure. The Adaptive
Kriging Monte Carlo methodology is perhaps the most well known of these methods, and achieves
close to state of the art results [2, 3, 6]. Efficient methods of estimating the PTR measure also exist in
reinforcement learning [13]. Beglerovic et al. [17] use a Bayesian optimisation approach to identify
failure cases for an autonomous vehicle but do not exhaustively search for all x such that f(x) < 0

6
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← va

−xa

xlim

←← aego

Variable Distribution / Value

xa U [−100m, 0m]
va U [10m, 15m]
dthreshold 20 m
aego 2 ms−2

xlim 60 m

Figure 3: Depiction of our T-junction experiment. Left: Ego is shown in red merging into a road in a
left hand traffic system where the adversarial car is shown in blue. The red circle represents the limits
of the perception systems of ego. dthreshold, the smallest safe distance between ego and the adversarial
car, is not shown. Right: Random variables and parameters.

and also do not calculate the PTR measure, pf . Similarly, Wang et al. [18] use a realistic LiDAR
simulator to modify real-world LiDAR data which can then be used to test end-to-end autonomous
driving systems while searching for adversarial traffic scenarios with Bayesian Optimisation. A
related problem in the autonomous vehicle space is finding the most likely x, i.e. with largest p(x),
leading to f(x) < 0 [19]. This is closely related to first order methods for estimating the PTR
measure [15].

Although there exists literature related to Gaussian Process modelling for discontinuous targets [11],
there is little literature on active learning specifically for the PTR measure for discontinuous targets.

C Hierarchical model details

In this section we provide additional details which describe the model proposed in Section 2 in further
detail. Let X be a matrix containing all the x in D and Y be a vector containing all the y in D.
We assume that p(y∗|x∗,D, y∗ ̸= NaN) follows a Gaussian process, i.e. p(y∗|x∗,D, y∗ ̸= NaN) =
N (µ(x∗), σ(x∗)) with

µ(x∗) = k(x∗,X)⊤(k(X,X) + σ2
noiseI)

−1Y,

σ2(x∗) = k(x∗,x∗)− k(x∗,X)⊤(k(X,X) + σ2
noiseI)

−1k(X,x∗),

where k : X × X → R is a positive definite kernel with 0 < k(x,x) ≤ 1 for all x ∈ X , and
K(X1,X2) is matrix containing evaluations of the kernel at all points in X1 and X2, and σnoise is a
small positive constant which should be inversely proportional to how deterministic the evaluation of
y is.

We assume that p(y∗ = NaN|x∗,D) is given by a classification Gaussian process, i.e. p(y∗ =
NaN|x∗,D) =

∫
probit(h)p(h|x∗,D)dh = pnan(x∗), where p(h|x∗,D) is the predictive distribu-

tion of a Gaussian process which can be calculated using the expectation propagation method as
described in Rasmussen and Williams [20].

To calculate the predicted probability of misclassification for our model, recall that we are trying to
define the classification boundary between the failure event y∗ < 0 ∩ y∗ ̸= NaN and the comple-
mentary case. We classify this event based on p(y∗ < 0, y∗ ̸= NaN|x∗,D) = p(y∗ < 0|x∗,D, y∗ ̸=
NaN)p(y∗ ̸= NaN|x∗,D) > 0.5. Therefore we calculate the predicted misclassification probability
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as

pmisclassification(x∗) =

{
p(y∗ < 0, y∗ ̸= NaN|x∗,D) if p(y∗ < 0, y∗ ̸= NaN|x∗,D) < 0.5,

1− p(y∗ < 0, y∗ ̸= NaN|x∗,D) otherwise.
(9)

where p(y∗ < 0, y∗ ̸= NaN|x∗,D) = Φ (−µ(x∗)/σ(x∗)) p(y∗ ̸= NaN|x∗,D), where µ(x∗) and
σ(x∗), are the predicted mean and standard deviation of the regression Gaussian process, and Φ is
the standard normal CDF.

We calculate the conditional failure probability for the regression Gaussian process using p(y∗ <
0|x∗,D, y∗ ̸= NaN) = Φ (−µ(x∗)/σ(x∗)). It follows when p(y∗ ̸= NaN|x∗,D) = 1, Eq. (9)
reduces to the form in Echard et al. [2], i.e. pmisclassification(x∗) = Φ (−|µ(x∗)|/σ(x∗)).

In this paper we only consider systems with a single performance function, however Yun et al. [3]
demonstrate how acquisition functions for multiple performance functions can be combined when
one is interested in a combined PTR measure for the performance functions. This can be applied to
our hierarchical model directly.

Finally, we note that our modifications to the AK-MCS algorithm are fairly general and only involve
changing the performance function model and acquisition function, and therefore these changes could
possibly also be used with different active learning algorithms. We do not explore these possible
applications in this paper and instead leave this as a topic for future research.

D Experimental Hyperparameters

For the classification part of the hierarchical GP we use a Matern52 kernel and fix the variance to
105 as we find that this ensures a quick convergence in practice, and corresponds to a prior belief
that the classification GP should model a deterministic function. For all regression GPs we use a
Matern52 kernel with variance and lengthscale determined by optimisation on the training data with
some relatively weak constraints: the lengthscale falls in [0, 0.2] and variance falls in [0.5, 1]. For
GPC we use a Matern52 kernel with variance 100 and length scale constrained within [0, 0.2]. For all
GPs we set the likelihood variance to a small positive number (0.0052), representing a belief that the
system performance is deterministic. For AK-MCS we add nmc = 5× 103 proposal samples when
the maximum misclassification is below η = 0.02 and terminate the algorithm when the coefficient of
variation is below 0.1, which are similar criteria to those used in Echard et al. [2]. In all experiments,
the initial design of experiments is 12 samples. The Gaussian Process models were created using
GPy [21], and Emukit was used for the active learning algorithms [22].

E Additional Experimental Results

E.1 Metrics

We use the following metrics, some of which were used in the original AK-MCS paper [2], and some
of which we introduce specifically to measure aspects of performance related to our problem.

• Maximum predicted misclassification (maxx∈S pmisclassification(x)) bounds the "risk" suffered
over p(x), and hence can be used to measure the convergence of the internal state of the
algorithm, i.e. it does not require ground truth data. Used in Echard et al. [2].

• Failure probability (pf ) can be used to measure if the identified failure region has the correct
size, by comparing to the pf computed in some other way as ground truth (i.e. analytically).
Used in Echard et al. [2].

• Coefficient of Variation (CoV) is used to assess the algorithms internal uncertainty in the
estimated pf , and can be calculated as described in Algorithm 1. Used in Echard et al. [2].

• F1score can be used to check if the identified failure region is correctly located in the space
of x. We introduce this metric because in reliability problems the failure probability is
usually low and hence the class distribution is imbalanced, and F1score is known to perform
well in such cases. The F1score is defined as F1 = precision×recall

precision+recall where precision and recall
are measured with a test set of 105 points, treating failure as the positive class and the safe
region as the negative class. Used in Iwazaki et al. [5].
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Figure 4: Plots of ground truth performance functions.

• Average precision penalises an incorrectly located failure region in a similar way to F1score,
however it has the additional advantage that the ranking of the predicted class scores is
tested. Average precision is insensitive to correctly ranked but miscalibrated scores. It is
also measured with a test set of 105 points.

E.2 Additional Figures

Fig. 5 and Fig. 6 show the convergence of the failure probability (pf ), maximum predicted misclassifi-
cation probability, average precision and F1score for the models for the toy function and autonomous
driving experiments. The ground truth performance function for the toy function this experiment is
plotted in Fig. 4a. In Table 2 we show the number of samples required for each algorithm to terminate
and the pf , average precision and F1score when the algorithm terminates.

E.3 Comparing values of α for the Regression GP

In Fig. 7-8 we repeat the analysis from Section 3 to show the convergence of failure probability (pf ),
average precision, maximum predicted misclassification probability and F1score for fitted masked
Gaussian processes with different α. In comparison to Hierarchical GP, all masked GPs are similar.
All models show slower convergence than Hierarchical GP. Table 3 shows the termination results for
different values of α.
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Table 2: Comparison of pf , coefficient of variation (CoV), F1score (F1), Average Precision (AP)
and number of evaluations (N. Eval.) for all methodologies. The total function evaluations includes
the initial design of experiments (12 evaluations) and the number of iterations of the active learning
algorithm. Number of iterations was capped at 150 and methods hitting the cap are marked with did
not terminate (DNT). Mean and standard deviation for 5 repeats are shown.

Methodology pf CoV F1 AP N. Eval.
Avg. (Std. Dev.)

Toy function

Analytic 0.036906 N/A N/A N/A N/A
Hierarchical GP (ours) 0.036 (0.0051) 0.074 (0.0061) 1 (0.0011) 1 (6.1e-07) 56 (3.4)
Masked GP α = 1.0 0.019 (0.0031) 0.096 (0.013) 0.66 (0.00013) 0.56 (0.041) 20 (3.2)
GPC 0.037 (0.0026) 0.073 (0.0027) 0.99 (0.003) 1 (0.00027) DNT

Autonomous Driving

Analytic 0.0382 N/A N/A N/A N/A
Hierarchical GP (ours) 0.038 (0.0019) 0.071 (0.0019) 1 (0.0013) 1 (1.7e-05) 81 (21)
Masked GP α = 1.0 0.037 (0.0041) 0.073 (0.0044) 0.92 (0.063) 0.89 (0.097) DNT
GPC 0.035 (0.0029) 0.074 (0.003) 0.98 (0.0049) 1 (0.0023) DNT
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Figure 5: Convergence of failure probability (pf ), average precision, maximum predicted misclassifi-
cation probability and F1score for fitted Gaussian processes for the simple toy function. The shaded
area represents the minimum and maximum of 5 repeats, and the dark line represents the mean. All
models eventually obtain a pf which is correct within the Monte Carlo error calculated using the
CoV (approximately 0.0027).
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Figure 6: Convergence of failure probability (pf ), average precision, maximum predicted misclassifi-
cation probability and F1score for fitted Gaussian processes for the autonomous driving experiment.
The shaded area represents the minimum and maximum of 5 repeats, and the dark line represents the
mean. All models eventually obtain a pf which is correct within the Monte Carlo error calculated
using the CoV (approximately 0.0027).
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Figure 7: Convergence of failure probability (pf ), average precision, maximum predicted misclassifi-
cation probability and F1score for fitted masked Gaussian processes with different α for the simple
toy function. The shaded area represents the minimum and maximum of 5 repeats, and the dark line
represents the mean. All models eventually obtain a pf which is correct within the Monte Carlo error
calculated using the CoV (approximately 0.0027).

11



0 20 40 60 80 100 120 140

Iterations

10−5

10−4

10−3

10−2

10−1

Fa
ilu

re
Pr

ob
ab

ili
ty

A
bs

ol
ut

e
E

rr
or

Masked GP α = 1

Masked GP α = 0.5

Masked GP α = 0.1

0 20 40 60 80 100 120 140

Iterations

1
2

0.6

0.7

0.8

1− 10−1

f1

Masked GP α = 1

Masked GP α = 0.5

Masked GP α = 0.1

0 20 40 60 80 100 120 140

Iterations

1
2

1− 10−1

1− 10−2

0.6

0.7

0.8

1− 3 · 10−2

1− 2 · 10−2

A
ve

ra
ge

Pr
ec

is
io

n

Masked GP α = 1

Masked GP α = 0.5

Masked GP α = 0.1

0 20 40 60 80 100 120 140

Iterations

2× 10−1

3× 10−1

4× 10−1

M
ax

im
um

pr
ed

ic
te

d
m

is
cl

as
si

fic
at

io
n

pr
ob

ab
ili

ty
Masked GP α = 1

Masked GP α = 0.5

Masked GP α = 0.1

Figure 8: Convergence of failure probability (pf ), average precision, maximum predicted misclas-
sification probability and F1score for fitted masked Gaussian processes with different α for the
autonomous driving experiment. The shaded area represents the minimum and maximum of 5 repeats,
and the dark line represents the mean. All models eventually obtain a pf which is correct within the
Monte Carlo error calculated using the CoV (approximately 0.0027).

Table 3: Comparison of pf , coefficient of variation (CoV), F1score (F1), Average Precision (AP) and
number of evaluations (N. Eval.) for fitted masked Gaussian processes with different α. The total
function evaluations includes the initial design of experiments (12 evaluations) and the number of
iterations of the active learning algorithm. Number of iterations was capped at 150 and methods
hitting the cap are marked with did not terminate (DNT). Mean and standard deviation for 5 repeats
are shown.

Methodology pf CoV F1 AP N. Eval.
Avg. (Std. Dev.)

Toy function

Masked GP α = 0.1 0.025 (0.0089) 0.08 (0.0098) 0.79 (0.19) 0.71 (0.26) 75 (78)
Masked GP α = 0.5 0.018 (0.0012) 0.086 (0.018) 0.66 (6.7e-05) 0.56 (0.055) 19 (4.9)
Masked GP α = 1.0 0.019 (0.0031) 0.096 (0.013) 0.66 (0.00013) 0.56 (0.041) 20 (3.2)

Autonomous Driving

Masked GP α = 0.1 0.038 (0.0014) 0.071 (0.0014) 0.95 (0.047) 0.93 (0.078) DNT
Masked GP α = 0.5 0.038 (0.0019) 0.072 (0.0019) 0.97 (0.0093) 0.97 (0.017) DNT
Masked GP α = 1.0 0.037 (0.0041) 0.073 (0.0044) 0.92 (0.063) 0.89 (0.097) DNT
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