
Symbolic-Model-Based Reinforcement Learning

Pierre-Alexandre Kamienny 1,2, Sylvain Lamprier 2

1Meta AI
2Sorbonne Université, CNRS, ISIR, F-75005 Paris, France

3 Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France
pakamienny@meta.com

Abstract

We investigate using symbolic regression (SR) to model dynamics with mathemati-
cal expressions in model-based reinforcement learning (MBRL). While the primary
promise of MBRL is to enable sample-efficient learning, most popular MBRL
algorithms rely, in order to learn their approximate world model, on black-box
over-parametrized neural networks, which are known to be data-hungry and are
prone to overfitting in low-data regime. In this paper, we leverage the fact that a
large collection of environments considered in RL is governed by physical laws
that compose elementary operators e.g sin ,

√
, exp , d

dt , and we propose to search
a world model in the space of interpretable mathematical expressions with SR. We
show empirically on simple domains that MBRL can benefit from the extrapolation
capabilities and sample efficiency of SR compared to neural models.

1 Introduction

Figure 1: Symbolic-MBRL

Motivated by real-world applications, such as robotic con-
trolling [1, 2], one of the main goals of the field of Rein-
forcement Learning (RL) is to learn to control systems with
non-linear (potentially stochastic) dynamics. Most control
systems, irrespective of the task to solve (i.e. rewards max-
imization) have in common the fact that their dynamics are
governed by physical laws. They are usually expressed with
mathematical equations connecting the next state with the
system’s past states and controller’s actions with operators
such as time-derivatives, trigonometric operators, power
functions. Solving a task usually involves implicitly a good
understanding of the dynamics, e.g. goal reaching.

For instance, in the classic CartPole environment [3, 4], the system’s state is described by (x, ẋ, θ, θ̇)

where x (resp. ẋ) denotes the position (resp. speed) of the cart along the x-axis and θ (resp. θ̇) is
the angle (resp. rotation) of the pole w.r.t the cart. The agent’s action a affects the system’s state
according to the following equations [4, 5]:

θ̈ =
g sin θ + cos θ

(
−Kmaga−mplθ̇

2 sin θ
mc+mp

)
l
(

4
3 − mp cos2 θ

mc+mp

) ẍ =
Kmaga+mpl

(
θ̇2 sin θ − θ̈ cos θ

)
mc +mp

(1)

where g,Kmag,mp,mc, l are all constants. Systems with impossible states, safety or physical
constraints, e.g. the joint of a robotic arm cannot exceed a certain angle [6, 7], can be expressed
via piece-wise expressions. When the environment is stochastic, probabilistic distributions appear.
Note that the parametrization of the state and action spaces has an impact on the symbols that are

2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems.

necessary to describe the system dynamics; for instance, if ẋ and θ̇ were not in the CartPole agent’s
observation, derivative operators would have to appear in the equation. Generally, the larger the
state-space parametrization, the "shorter" equation is.1

Model-Based Reinforcement Learning (MBRL) is a class of RL algorithms that involves a two-step
procedure repeated until task termination; a) learn from data a forward dynamics model (possibly
stochastic) function f that maps current state st and action at to next state st+1 and b) derive a
policy from this model. Though they have been shown to learn faster than model-free algorithms
theoretically [8] and in certain applications [9, 10], MBRL algorithms are often hard to train in
practice [11]. In this work, we challenge the go-to approach of using over-parametrized feed-forward
neural networks to approximate f as they are prone to overfitting when collected data does not have
enough coverage of state and action spaces. We propose to leverage prior knowledge on operators
that could appear in the environment dynamics equations, e.g. sin ,

√
, exp , d

dt .

Manipulating expressions to fit data is exactly the objective of SR algorithms that select f within a
large family of expressions through composition of operators, constants and variables, as opposed
to gradient-descent of over-parametrized models, e.g. neural networks (NNs). The latter have more
degrees of freedom and are easier to optimize, but prone to overfitting in low-data regimes, whereas
SR has recently shown excellent extrapolation capabilities [12, 13, 14]. Furthermore, SR provides an
interpretable and differential model, interesting properties for RL, which we develop in section 4.

Contributions. We propose a novel approach to dynamics modelling in control problems, which
we call Symbolic-Model-Based RL, that uses mathematical expressions to model dynamics. To our
knowledge, this is the first work that proposes to leverage SR to find an interpretable function f that
best maps state-action pairs (st, at) to the next state st+1. We provide empirical evidences in simple
domains, where our method largely outperforms the over-parametrized approaches, that SR provides
faster better dynamics models that generalize to unseen states-action pairs.

2 Related work

MBRL. We study the RL problem where an agent interacts with an unknown environment, for-
malized by a Markov Decision Process (S,A, p, r) where S (resp. A) represents the state (resp.
action) space, p the transition dynamics and r the reward functions. MBRL algorithms are a class
of RL algorithms that ground control policies on a model of the dynamics of environment. Most
of approaches alternate two steps repeatedly: i) collect data D with the current policy and learn an
approximate model f of the environment’s dynamics, fitting D as in supervised learning (SL), i.e.:

f∗ = argmax
f∈F

E(st,at,st+1)∼D L(st+1, f(st, at)) (2)

where F is a family of functions, e.g. neural networks or Gaussian processes, and L a loss function
that depends on the nature of f ; ii) then, simulate transitions with the model f and optimize the policy
accordingly. Note that in this work we consider reward and termination functions learned in the same
way as dynamics, even though MBRL algorithms [15, 16] often consider them provided to the agent.
We refer the reader to an exhaustive MBRL review [17]. Step i) usually faces classic under/over-fitting
issues of SL (w.r.t the state and action space), causing sub-optimal task performance. The design
of predictive model has proven to be very challenging; Gaussian Processes (GPs) can under-fit on
complex dynamical systems [18], whereas over-parametrized functions, i.e. neural networks, can
express complex (and high-dimensional) dynamics, but are prone to overfitting. To avoid overfitting,
one can a) acquire more data, but this often comes with exploration challenges, b) use regularization,
i.e. making the model simpler, in the form of priors, e.g. GPs’ kernel function or Bayesian neural
networks [19, 20], or c) use ensembles [21, 22, 23]. [15] uses probabilistic NNs (b) in combination
with ensembles (c) to make MBRL agents uncertainty-aware for better planning.

Symbolic regression. SR, the science of inferring mathematical laws from experimental data
by searching over the space of interpretable mathematical expression by manipulating operators,
constants and variables, has already proved useful in a variety of domain such as physics [24, 25, 26,
27]. The leading algorithms for SR, excellently reviewed in [12], mainly rely on genetic programming
(GenP) [28, 29, 30] by iterating through steps of selection, mutation and crossover until a satisfactory
accuracy level is achieved. More recently, neural networks have been applied to SR to identify

1The best parametrization to decrease the complexity of predicting an equation from data is an open problem.

2

qualitative patterns to reduce the search space, either in combination with GenP algorithms [24, 31]
or without [32, 33, 34, 35, 13]. Recently, SR has been applied to model-free RL to learn interpretable
policies explicitly [36, 37, 38] or via the associated value function [39], but to our knowledge we are
the first to consider SR for MBRL. In addition to the immediate interpretability benefit, considering
the dynamics model search space F in Eq. (2) to be the family of short mathematical expressions
that contain constants, variables and operators from a given dictionary has the advantages of injecting
prior knowledge, smoothness properties, as well as to significantly reduce the size of the search space.

3 Experiments

Description of the algorithm. We propose to use an expression optimized via SR, instead of
the usual NN dynamics model, to fit data in a MBRL’s algorithm (step i)); though the symbolic
approach is applicable to most MBRL algorithm, we use Probabilistic Ensembles with Trajectory
Sampling (PETS) [15] implemented with MBRL-lib [11] as our base MBRL algorithm and Operon
[30], an efficient GenP algorithm, our base SR algorithm (details in Appendix A.1) Preliminary
experiments on the considered environments, showed that Operon had better performance that
numerous symbolic regressors, e.g. gplearn [40], PS-Tree [41] and AI-Feynman [24]; they either
had inaccurate predictions, overly complex expressions or inference was too long. As in PETS, we
maintain an ensemble of 7 dynamics models and select the sequence of actions that maximize rewards
using the cross-entropy method [42] on the dynamics simulated with trajectory sampling. We call
this model Symbolic-PETS and compare it to MLP-PETS, the original version of PETS.

Our experiments investigate the following questions: i) Can SR algorithms help learn predictive
models with less samples, ii) Do the obtained dynamics equations have interesting properties?
iii) How is this manifesting in terms of performance (task solving)? We consider deterministic
environments, which already represent a substantial of environments in the RL literature [6, 7, 43].

An illustrating example. For illustrative purposes, we consider a simple one-dimensional state
MDP where an agent moves on the horizontal axis x while observing its position, with episode length
10 and the following dynamics:

st+1 = st + at, rt = cos(2πst+1) exp(|st+1|/3) (3)

As illustrated on Fig. 2, solving this MDP is challenging as it requires sufficient exploration to learn
the reward function and avoid falling into local minimas, i.e. staying in relative integers x values
without going to better ones. As shown in Fig. 2, MLP-PETS’ dynamics models over-fits on the
training distribution. Even using an ensemble of 7 models, the uncertainty of the ensemble is not

101

100
0

100

101

R
ew

ar
d

Truth
Symbolic-PETS
Symbolic-PETS(elite)
MLP-PETS
MLP-PETS(elite)

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

2

4

6

8

10

E
va

lu
at

io
n

Ti
m

es
te

ps

Figure 2: We train the dynamics models on 500 transitions collected by a random (uniform [−1, 1]).
The top row is the immediate reward function predicted by learned models (evaluated with at = 0 for
clarity) and dots correspond to training data. Elite is the best dynamics model w.r.t to an evaluation set.
The bottom row represents 3 evaluation roll-outs after the predictive model was updated:we observe
that Symbolic-PETS allows agents to reach better rewarded states. Symbolic-PETS’s predicted reward
function is (1.0 exp (|0.333st + 0.333at|+ 2.14e−4) sin (6.283xt + 6.283at − |0| − 4.712).

3

101 102 103

Environment interactions

50

100

150

200

R
ew

ar
d

101 102 103

Environment interactions

10 7

10 5

10 3

10 1

M
od

el
 e

rr
or

 (o
n-

po
lic

y
bu

ff
er

)

101 102 103

Environment interactions

10 7

10 5

10 3

M
od

el
 e

rr
or

 (r
an

do
m

 p
ol

ic
y)

Symbolic-PETS
MLP-PETS

Figure 3: Symbolic-PETS solves CartPole very fast. Agents are evaluated on 3 episodes with
3 random seeds every 10 transitions. MLP-PETS solves CartPole despite significant model error,
suggesting that solving CartPole does not require a perfect understanding of the environment.

good enough to be leveraged for efficient exploration, leading to a sub-optimal policy. On the other
hand, Symbolic-PETS’ dynamics models extrapolate really well on unseen states, thus achieving
optimal behavior in just one update. In Appendix B.1.2, we present the evolution of Symbolic-PETS
every episodes after just 20 observed random transitions.

CartPole. We consider the continuous CartPole [6], where the agent state is st = (xt, θt, ẋt, θ̇t).
As in [15, 11], the termination and reward function are made available to the agent, therefore control
is restricted to be a problem of dynamics modelling. We define the model error L in Eq. (2) as the
MSE averaged over output dimensions.

In a first experiment, we explore the capabilities of both symbolic and MLP regressors on the data
generated by a random policy on CartPole. We collect an evaluation dataset of 5e4 transitions,
enough to have good state-action coverage. We then train the two dynamics models on training
datasets of growing sizes and plot the model error in Fig. 5 (App. B.2.2). The symbolic model
predicts the following equations with the accuracy reached by the MLP in two order of magnitude
less interactions:

xt+1 = xt + 0.02ẋt

θt+1 = θt + (0.02θ̇t + 0.015)/ cos(0.035 ∗ θ̇t)− 0.015

ẋt+1 = (0.002θt + 2.34e−4θ̇tat + 1.0)× (ẋt + 0.195at − sin(0.015θt) + 3.23e−5)

θ̇t+1 = cos(0.195θt)(0.314θt + θ̇t − 8.97e−1at × (−0.031θ̇t − 2.014)
(0.016θ̇t − cos(1.053θt))

(6.173− 0.002θt)
)

(4)

Interestingly, predicted equations are a bit different than in Eq. (1), though we can notice constants
such as the time-discretization interval 0.02. What could be as missing terms can be explained
by limited development as θ and x have small values because of CartPole’s constraints. In Fig
3, we demonstrate that Symbolic-PETS is able to solve CartPole in just 20 interactions with the
environment, a state-of-the-art performance to our knowledge.

4 Discussion

We demonstrated on simple environments that SR can learn better predictive models with many less
samples than neural network and that they extrapolate well to unseen state-action pairs much better.
Though [12] showed promising results on real-world regression datasets with input dimensions up to
124 (with a single output dimension), SR still remains to be scaled to higher output dimensions, with
challenges including parallelizing regressor training of each output dimension or pixel observations.

SR can have significant impact on multiple RL research topics, e.g partially-observable environments,
or meta- and continual-RL thanks to sample efficiency of SR. Having an interpretable (and differen-
tiable) dynamics model can enable constrained reinforcement learning [44], environment design [45]
and domain randomization [46] to enable "Sim2Real" transfer to new environments. Yet, SR current
tools are not as modulable as spatio-temporal NNs. To be useful in the aforementioned RL domains,
we aim at designing algorithms and their implementation to respect these non-exhaustive properties
of neural networks; i) can express distributions to handle epistemic and aleatoric uncertainties, ii)
learning can be initialized to some known expression, iii) allow multi-step predictions and learning
and iv) preprocessing of inputs (raw pixel environments).

4

References
[1] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,
2015.

[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[3] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man, and
cybernetics, (5):834–846, 1983.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[5] Razvan V Florian. Correct equations for the dynamics of the cart-pole system. Center for
Cognitive and Neural Studies (Coneural), Romania, 2007.

[6] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[7] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. Deepmind control suite, 2018.

[8] Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret
bounds for model-based reinforcement learning with greedy policies. Advances in Neural
Information Processing Systems, 32, 2019.

[9] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for
data-efficient learning in robotics and control. IEEE transactions on pattern analysis and
machine intelligence, 37(2):408–423, 2013.

[10] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search
under unknown dynamics. Advances in neural information processing systems, 27, 2014.

[11] Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto Calandra. Mbrl-lib:
A modular library for model-based reinforcement learning. Arxiv, 2021.

[12] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco
Virgolin, Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

[13] Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton.
End-to-end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

[14] Gabriel Kronberger, Fabricio Olivetti de França, Bogdan Burlacu, Christian Haider, and Michael
Kommenda. Shape-constrained symbolic regression—improving extrapolation with prior
knowledge. Evolutionary computation, 30(1):75–98, 2022.

[15] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural
information processing systems, 31, 2018.

[16] Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement
learning through optimistic policy search and planning. Advances in Neural Information
Processing Systems, 33:14156–14170, 2020.

[17] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based reinforcement
learning: A survey. arXiv preprint arXiv:2006.16712, 2020.

[18] Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth. Manifold
gaussian processes for regression, 2014.

[19] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International conference on machine learning, pages 1613–1622. PMLR,
2015.

[20] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. Advances in neural information
processing systems, 30, 2017.

5

[21] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Number 57 in
Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, Florida,
USA, 1993.

[22] Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout. In NIPS workshop on bayesian deep learning, volume 192, 2016.

[23] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

[24] Silviu-Marian Udrescu and Max Tegmark. Ai feynman: a physics-inspired method for symbolic
regression, 2020.

[25] Silviu-Marian Udrescu and Max Tegmark. Symbolic pregression: Discovering physical laws
from raw distorted video. Physical review. E, 103 4-1:043307, 2021.

[26] M. Cranmer, Alvaro Sanchez-Gonzalez, Peter W. Battaglia, Rui Xu, Kyle Cranmer, David N.
Spergel, and Shirley Ho. Discovering symbolic models from deep learning with inductive
biases. ArXiv, abs/2006.11287, 2020.

[27] Anja Butter, Tilman Plehn, Nathalie Soybelman, and Johann Brehmer. Back to the formula –
lhc edition. 2021.

[28] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
science, 324(5923):81–85, 2009.

[29] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H Moore. Learn-
ing concise representations for regression by evolving networks of trees. arXiv preprint
arXiv:1807.00981, 2018.

[30] Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon c++: An efficient
genetic programming framework for symbolic regression. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, GECCO ’20, page 1562–1570, New
York, NY, USA, 2020. Association for Computing Machinery.

[31] Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

[32] Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

[33] Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation
and control. In International Conference on Machine Learning, pages 4442–4450. PMLR,
2018.

[34] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-
candolo. Neural symbolic regression that scales, 2021.

[35] Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton.
Deep symbolic regression for recurrent sequences. arXiv preprint arXiv:2201.04600, 2022.

[36] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,
Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep
reinforcement learning. In International Conference on Machine Learning, pages 5979–5989.
PMLR, 2021.

[37] Jacob F Pettit, Brenden K Petersen, FL Silva, Dale B Larie, RC Cockrell, Gary An, and
Daniel M Faissol. Learning sparse symbolic policies for sepsis treatment. Technical report,
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2021.

[38] Mathurin Videau, Alessandro Leite, Olivier Teytaud, and Marc Schoenauer. Multi-objective
genetic programming for explainable reinforcement learning. In European Conference on
Genetic Programming (Part of EvoStar), pages 278–293. Springer, 2022.

[39] Jiří Kubalík, Erik Derner, Jan Žegklitz, and Robert Babuška. Symbolic regression methods for
reinforcement learning. IEEE Access, 9:139697–139711, 2021.

[40] Trevor Stephens. gplearn. https://github.com/trevorstephens/gplearn, 2016.
[41] Hengzhe Zhang, Aimin Zhou, Hong Qian, and Hu Zhang. Ps-tree: A piecewise symbolic

regression tree. Swarm and Evolutionary Computation, 71:101061, 2022.

6

https://github.com/trevorstephens/gplearn

[42] Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The cross-entropy
method for optimization. In Handbook of statistics, volume 31, pages 35–59. Elsevier, 2013.

[43] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax–a differentiable physics engine for large scale rigid body simulation. arXiv
preprint arXiv:2106.13281, 2021.

[44] Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforce-
ment learning. In International Conference on Machine Learning, pages 7390–7399. PMLR,
2021.

[45] Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.
arXiv preprint arXiv:2203.01302, 2022.

[46] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23–30. IEEE, 2017.

7

A Method details

A.1 Operon

We used Operon [30] with the following allowed operators add,sub,mul,div,sin,cos, pow for nodes.
Leaves are either variables, i.e. a state feature or a numerical constant. We use the following
hyper-parameters: 5 local iterations, a population of size 5000, a total of 10000 generations and 10
threads.

B Experiment details

We perform our experiments with 1 GPU and 1 CPU.

B.1 Toy example

B.1.1 Model hyper-parameters.

MLP-specific hyper-parameters. We consider a deterministic neural network with 4 hidden layers
of size 200 with SiLU activation, trained with Adam optimizer during a maximum of 2000 epochs
with batch size 256 and patience epochs 25 (meaning training stops when loss/ evaluation score does
not progress more than 0.01 relatively), learning rate 7.5e− 4 and weight decay 3e− 5. Inputs are
normalized.

Symbolic-specific hyper-parameters. We use Operon with 5 local iterations,
10000 generations, 10 threads, population size 5000 and allowed symbols are
add,sub,mul,div,constant,variable,sin,exp,abs.

Action optimizer. We use CEM with planning horizon 3, 10 iterations, elite ratio 0.1, population
size 1000, alpha 0.1 and clipped normal action distribution. Out of the ensemble of 7 predictive
models, only the 3 elite (w.r.t evaluation set) ones are used.

B.1.2 Results

We present the evolution of Symbolic-PETS every episodes after just 20 random transitions in Fig. 4

B.2 CartPole

B.2.1 Model hyper-parameters.

MLP-specific hyper-parameters. Same as for the toy example.

Symbolic-specific hyper-parameters. We use Operon with 5 local iterations,
10000 generations, 10 threads, population size 5000 and allowed symbols are
add,sub,mul,div,constant,variable,sin,cos,pow.

Action optimizer. We use CEM with planning horizon 15, 5 iterations, elite ratio 0.1, population
size 350, alpha 0.1. Out of the ensemble of 7 predictive models, only the 3 elite (w.r.t evaluation set)
ones are used.

B.2.2 Analysis of results

Interestingly, one can notice in Fig. 3 the performance (in terms of reward and model error) fluctuate
a bit as the number of interactions grows (contrary to Fig. 5). This can be explained by the fact that
random samples are the most informative transitions in terms on environment understanding, whereas
on-policy transitions (whose proportion grows during learning) are all located in a very narrow part
of the state-space (pole standing still)

8

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

2

4

6

R
ep

la
y

bu
ff

er

st
at

e
di

st
ri

bu
tio

n

(a) 20 environments steps

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

5

10

R
ep

la
y

bu
ff

er

st
at

e
di

st
ri

bu
tio

n

(b) 30 environments steps

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

5

10

15

R
ep

la
y

bu
ff

er

st
at

e
di

st
ri

bu
tio

n

(c) 40 environments steps

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

5

10

15

R
ep

la
y

bu
ff

er

st
at

e
di

st
ri

bu
tio

n

(d) 50 environments steps

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

10

20

R
ep

la
y

bu
ff

er

st
at

e
di

st
ri

bu
tio

n

(e) 60 environments steps

101

100
0

100

101

R
ew

ar
d Truth

Symbolic-PETS
Symbolic-PETS(elite)

2.5

5.0

7.5

10.0

E
va

lu
at

io
n

Ti
m

es
te

ps

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
x-axis

0

10

20

R
ep

la
y

bu
ff

er

st
at

e
di

st
ri

bu
tio

n

(f) 70 environments steps

Figure 4: Top row is the reward function evaluated with at = 0 for clarity learned by the Symbolic-
PETS agents (elite is the best dynamics model w.r.t to an evaluation set). Middle rows represents 3
evaluation roll-outs after a predictive model update. Bottom row is the training replay buffer state
distribution.

101 102 103

Environment interactions

10 7

10 5

10 3

10 1

101

M
od

el
 e

rr
or

Symbolic
MLP

Figure 5: Model error of the MLP and symbolic regressors (averaged over different seeds) on data
generated by a random policy.

9

	Introduction
	Related work
	Experiments
	Discussion
	Method details
	Operon

	Experiment details
	Toy example
	Model hyper-parameters.
	Results

	CartPole
	Model hyper-parameters.
	Analysis of results

