

ondon

Recommendations for Baselines and Benchmarking Approximate Gaussian Processes

approximations.

Contributions

- **Concrete recommendations** for how approximate GP methods should be assessed
- A recommended training procedure for the SGPR method of Titsias (2009)
- We characterise and illustrate **two approximation regimes** for SGPR
- An experimental procedure for comparing approximate GP methods

Recommendations

- → Approximation quality. Assess the quality of the approximation to the exact GP, for both hyperparameter selections and posterior quality.
- → Recommended procedure. For a new method, a recommended training procedure should be given, and assessed for 1) various compute budgets, 2) how much compute is needed for desired performance
- → Dataset suitability. Compare to mean prediction and linear model to avoid trivial solutions and that the dataset is not too simple
- → Near-exact regime. Compare the compute required to achieve near-exactness
- → Non-exact regime. Compare how many datasets methods can achieve near-exactness on
- → Timed performance. Run each method for an extended amount of time, comparing at multiple time points

Imperial College CAMBRIDGE

Sebastian W. Ober, David R. Burt, Artem Artemev, Mark van der Wilk Motivation: approximate GP methods are often compared in a wide range of settings, making it difficult to determine what works best. Our goal: provide a training procedure that ensures that sparse GPs are a strong baseline and an experimental procedure for comparing Gaussian process

Near-Exact vs. Non-Sparse Regimes for SGPR egression example (N=200, M=15) Tightness of bounds → In the **near-exact regime**, — lower bound 0.70 inducing points upper bound an approximation can get full GP - - marg. lik. ____ close to the exact GP: 2 0.55 0.50 • Compare the compute required Number of inducina points • For SGPR, few inducing points are needed Regression example (N=200, M=100) Tightness of bounds → For non-sparse datasets: • ~N inducing points are data needed for exact Inducing points lower bound -- marg, lik performance Regression input :

- One cause is *model* misspecification

Timed Performance Evaluation

Training procedure:

- \rightarrow Iterate:
 - Choose inducing points using procedure from Foster et al. (2009)/Burt et al. (2020)
 - Learn hyperparameters with *fixed* inducing points

Results:

- \rightarrow For elevators, both methods perform near-exactly, with SGPR being faster
- \rightarrow kin40k is non-sparse, so that the Iterative GP performs better

Bounds (nats) 0.50 + tors 14939 $0.45 \cdot$ 0.40-5000Nel 0.351000Time (s) Time (s)Bounds (nats) NLPD (nats) 25000----- $\begin{array}{l} kin40k\\ N=36000 \end{array}$ -250005001000500Time (s) Time (s)

