
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes

Our goal: provide a training procedure that ensures that sparse GPs are a strong baseline and an experimental procedure for comparing Gaussian process 
approximations.
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GLD Toy Problem

Marginal distributions for our Generalised Lambda Distribution (GLD) objective function at three different input 
locations.

Regret achieved on GLD problems of dimensions 3, 3 and 6 for quantiles 0.75, 0.95 and 0.95.

Motivation: approximate GP methods are often compared in a wide range of settings, making it difficult to determine what works best.

Our Acquisition Function(s)

Thompson samples from our hetroscedastic GP quantile 
model.

1. Thompson sampling: 
+ Embarrassingly parallel
+ Efficient GP samples with random 

Fourier features. 

2. Q-GIBBON:
+ Based on entropy search
+ Greedy batch building

Timed Performance Evaluation

Recommendations
➔ Approximation quality. Assess the quality of the 

approximation to the exact GP, for both hyperparameter 
selections and posterior quality.

➔ Recommended procedure. For a new method, a 
recommended training procedure should be given, and 
assessed for 1) various compute budgets, 2) how much 
compute is needed for desired performance

➔ Dataset suitability. Compare to mean prediction and 
linear model to avoid trivial solutions and that the dataset 
is not too simple

➔ Near-exact regime. Compare the compute required to 
achieve near-exactness

➔ Non-exact regime. Compare how many datasets 
methods can achieve near-exactness on

➔ Timed performance. Run each method for an extended 
amount of time, comparing at multiple time points

Training procedure:
➔ Iterate:
◆ Choose inducing points using procedure 

from Foster et al. (2009)/Burt et al. (2020)
◆ Learn hyperparameters with fixed 

inducing points

Results:
➔ For elevators, both methods perform 

near-exactly, with SGPR being faster
➔ kin40k is non-sparse, so that the Iterative 

GP performs better

Near-Exact vs. Non-Sparse Regimes for SGPR
➔ In the near-exact regime, 

an approximation can get 
close to the exact GP:
● Compare the compute 

required 
● For SGPR, few inducing 

points are needed

➔ For non-sparse datasets:
● ~N inducing points are 

needed for exact 
performance

● One cause is model 
misspecification

Contributions
◆ Concrete recommendations for how approximate GP 

methods should be assessed
◆ A recommended training procedure for the SGPR 

method of Titsias (2009)
◆ We characterise and illustrate two approximation 

regimes for SGPR
◆ An experimental procedure for comparing approximate 

GP methods


