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1 Introduction

Many solutions have been proposed to make Gaussian processes (GPs) scalable. Of these, sparse
“inducing variable” approximations [Seeger et al., 2003; Snelson and Ghahramani, 2006; Quifionero-
Candela and Rasmussen, 2005] have remained popular, with the sparse variational method of Titsias
[2009] (referred to as SGPR, for Sparse GP Regression) being used as a baseline in virtually all
papers that propose new approximations. This popularity likely stems from the method’s universal
applicability: wherever a GP can be applied, so can a sparse variational approximation. As many
baselines in so many papers have, sparse GPs have become perhaps the most criticised of all GP
approximations: every paper claims to outperform it. This may lead one to wonder why they are still
the most common baseline. Is there not a better approximation that should be used instead?

Answering this question is difficult, as papers often use different experimental setups, and may
impose different constraints on methods, thereby forcing them to operate in different regimes. The
lack of a clear answer has serious consequences for the GP community: First, it makes it difficult to
communicate research outcomes and progress to practitioners and outsiders, and second, it slows
down research progress by making it hard for researchers to build on earlier improvements. We
propose guidelines for evaluating GP approximations in regression settings. Specifically, we:

1. provide a recommended training procedure for SGPR [Titsias, 2009] that ensures it is a
strong baseline;

2. characterise two regimes of GP approximations, and illustrate them with SGPR;

3. suggest an experimental procedure for comparing GP approximations, which will make it
easier to compare approximations across papers.

Training procedures like the one we recommend exist within “folk wisdom”, but are rarely applied
when comparing methods. We suggest two settings that can be used to clearly compare methods, and
show that our SGPR procedure is a strong baseline that needs little tuning.

2 Goals of Gaussian Process Approximations

The principal goal of a GP approximation is to provide the benefits of a given GP model, while adding
as few complications (e.g. additional parameters) as possible. The benefits of a GP are typically
1) automatic selection of hyperparameters through marginal likelihood optimisation, without the
need for a validation set [Rasmussen and Williams, 2006, Chapter 5]; and 2) posterior predictions
with uncertainties. Usually, a method provides approximations for both capabilities. Assessing
both capabilities is typically done by using the approximation to train the hyperparameters and
calculate predictive metrics on a test set, e.g. root mean-squared error (RMSE), or negative log
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predictive density (NLPD). This is justified by the fact that GPs are used to make predictions, and
good predictions are desirable. However, it is not the case that improved predictions imply a better
GP approximation. FITC [Snelson and Ghahramani, 2006] is a famous example of this, as the
approximation introduces an ability to conflate uncertainty in the function with noise [Bauer et al.,
2016], which gives it the ability to model heteroskedastic noise. This is very different behaviour to
the GP it is designed to approximate, meaning that it may predict much better, while still being a poor
approximation. While the desirability of this is debatable, it certainly should be explicitly discussed.

Recommendation 1 In addition to prediction quality, assess the quality of the approximation com-
pared to the exact GP solution, in terms of both hyperparameter selection and posterior.

This can be done by computing (bounds on) distances to exact solutions for quantities of interest,
such as predictions [Titsias, 2014; Kim and Teh, 2018; Mallasto and Feragen, 2017; Burt, 2022], in
small examples (if necessary).

Even assessing predictive metrics is not straightforward. Approximations often introduce additional
parameters into a method, which control the accuracy. Typically, different datasets require different
values, without there being a clear and automatic method for setting them' (as opposed to the model
hyperparameters). To make a method useful to other researchers or practitioners, a clear tuning
procedure must be provided. Default values are helpful if they generally lead to good performance,
while cross-validation is always available if not, although at the cost of using a validation set. Some
approximation parameters (monotonically) improve the approximation quality (e.g. training time or
number of inducing variables), which allows them to be increased as more computation is provided.

An evaluation procedure should consider the goals and constraints of the practitioner using the
method. Two settings are the most relevant: 1) a computation-constrained practitioner wants an
answer given a particular compute budget, and 2) a practitioner wants to get within some distance of
the optimal performance, and is willing to wait as long as it takes to do so.

Recommendation 2 Approximation methods should be evaluated according to a clear recommended
training procedure, and evaluated by 1) measuring the performance for various given compute
budgets; and 2) measuring the compute needed to achieve a particular performance goal, where
every effort is taken to provide enough compute.

Lack of memory is often a larger obstacle to running GPs or SGPR than computational time, since it
is easy to run an algorithm for hours, while Out of Memory errors immediately stop computation.?
Running on CPU provides access to more memory, and therefore alleviates this at the cost of longer
run-times, which is no fundamental obstacle as supervision is not needed.

3 SGPR as a Strong Baseline Procedure

SGPR [Titsias, 2009] is a strong baseline that can follow the previous recommendations, while
keeping a simple training procedure. SGPR provides a lower bound (ELBO) to the marginal
likelihood, which can be maximised to select hyperparameters, and an approximate posterior for
making predictions. Training involves maximising the ELBO w.r.t. the hyperparameters to the best
of our ability. This balances reducing the KL between approximate and true posteriors with finding
good hyperparameters. Since SGPR is a full-batch method, we use the parameter-free quasi-Newton
optimiser L-BFGS [Chapter 7.2 Nocedal and Wright, 2006; Virtanen et al., 2020]. This has high
per-iteration computational cost, but converges in a few iterations, and does not require tuning any
optimisation parameters. We argue against using stochastic minibatch GP approximations [Hensman
et al., 2015] as a baseline due to the difficulty of tuning learning rates and batch sizes.

SGPR has two approximation parameters: the number of inducing points (/) and the inducing point
locations. To select the inducing point locations, we follow the “greedy variance reinit” procedure of
Burt et al. [2020]. This procedure alternates several times between 1) selecting inducing points using
the greedy variance method, and 2) maximising the ELBO w.r.t. only the model hyperparameters.
Adding more inducing points is guaranteed to increase the ELBO by > 0 [Bauer et al., 2016;
Matthews, 2016], so to select the number of inducing points M for a particular dataset, we recommend

"Rasmussen [1997] also discussed the importance of automatic methods for setting parameters in bench-
marking.

*Implementations of SGPR that are intrinsically more memory efficient have long existed [Gal et al., 2014]
but were cumbersome. Recent tools can provide these benefits without changing code [Artemev et al., 2022].



training multiple SGPR models with a growing number of inducing points. To evaluate according to
our two settings, the procedure can be stopped after a compute budget has run out, or continued until
returns in the ELBO diminish (necessary but not sufficient for being close to the true posterior).?
This procedure is well-defined, so evaluations in accordance to Recommendation 2 are possible.

The theoretical guarantees of SGPR go some way to satisfying Recommendation 1 as well, as this
at least quantifies the reduction in KL to the true posterior, and guarantees that as long as enough
inducing points are added, SGPR will behave as an exact GP. Nevertheless, it is still a good idea to
compare to an exact GP in different settings, e.g. as in Bauer et al. [2016] (dense and sparse data, or
different dimensionalities, with manageable data sizes).

4 The Near-Exact Approximation Regime

The typical situation for a Bayesian model, is that inference is analytically intractable. Approximate
inference schemes are introduced to find some tractable distribution (e.g. a Gauss1an) to approx1mate
a posterior that has no manageable closed-form solution. Gaussian process regression is unique within
approximate inference, as the true posterior is analytically tractable (Gaussian), but computationally
expensive (due to the kernel matrix inverse). As a consequence, approximate GP methods end up
approximating a Gaussian with a Gaussian with additional structure, or mean vectors and covariance
matrices with approximate vectors/matrices. In contrast to most posterior approximations, GP
approximations can often be very accurate.

There are even theoretical results that support this (often assuming sufficiently high numerical
precision). For example, conjugate gradient (CG) methods [Gibbs and Mackay, 1997; Davies,
2015; Wang et al., 2019] converge to the exact solution when given sufficient iterations, SGPR with
sufficient inducing points [Burt et al., 2019, 2020], interpolation methods [Wilson and Nickisch,
2015] with a dense enough grid, and random Fourier feature based methods [Rahimi and Recht, 2007;
Lazaro-Gredilla et al., 2010] if enough features are used. One commonality between all these results
is that “enough” computational resources must be added. What is “enough” is dataset dependent, and
impractical to predict beforehand.* The importance of recovering the true posterior in practice has
been discussed before [e.g. Wilson et al., 2015; Bauer et al., 2016; Matthews, 2016; van der Wilk,
2019], but should be given more attention in empirical evaluation.

4.1 Datasets where Near-Exactness is Achievable

Here, we investigate whether there are datasets where “enough” inducing points can be added to get a
near-exact solution with SGPR. We begin by illustrating this behaviour on a toy 1D dataset (fig. C.1).
The ELBO (lower bound) and upper bound [Titsias, 2014] are quantities that are computationally
tractable, and their behaviour can be used to assess the success or failure in achieving a near-exact
result. Convergence of the ELBO is only a necessary condition for a near-exact solution, which occurs
roughly after M = 12. If the upper bound also converges ()M > 18), one can also ascertain that the
posterior is near-exact. However, this condition is only necessary but not sufficient for hyperparameter
optimisation to have succeeded as the exact GP. There could still be a different hyperparameter setting
with a worse ELBO but large slack to a better marginal likelihood. The variational method could also
have changed the optimisation dynamics and ended up in a worse local optimum than the exact GP.

Recommendation 3 Approximate GP methods are at best equally susceptible to local optima in
the hyperparameters as the exact GP. To avoid trivial solutions, compare the approximate marginal
likelihood to that of a random guessing and linear model. Similar values indicate that the initialisation
should be changed to avoid the poor local optimum. If no better optimum can be found, the dataset is
constant or linear, which probably makes it unsuitable for benchmarking non-linear methods.

In fig. C.1, a comparison to the marginal likelihood of an exact GP confirms that the sparse approxi-
mation worked on all accounts. Figure C.4 shows similar behaviour on UCI datasets.

Near-exact approximations are possible, and therefore all approximations that achieve this should
give the same results. This is a useful consistency check between approximations. In addition,

3Other stronger metrics of posterior accuracy could be considered (e.g. a marginal likelihood upper bound
[Titsias, 2014]), but are currently a bit too finicky.

*While a priori results are known for some methods (e.g. Burt et al. [2020]) they require detailed knowledge
of the data generating process, and involve impractically large constant to provide practical recommendations.



showing that a new approximation can produce similar results is evidence for its usefulness in the
large-compute regime. However, this regime also limits the usefulness in comparing some measure
of “raw performance” between methods, since they perform the same.

Recommendation 4 [n the near-exact regime, approximations should be compared on how many
datasets near-exactness can be reached, and how much compute is needed to find such a solution.

If results are better than a baseline that has evidence for being near-exact, it may be interesting
to investigate the reason for the improvement. Comparing multiple near-exact methods allows the
source to be identified. For example, if two posteriors are near-exact, one can investigate whether
hyperparameter optimisation is the cause by transferring hyperparameters from one method to another.

4.2 Datasets with no Sparse Near-Exact Approximation

SGPR does not behave as well on all datasets, particularly when the full kernel matrix is not low-rank
at the optimal hyperparameter setting. This often occurs when data is sparse, or if the model is
misspecified. An example of the latter can be seen in fig. C.2, where the ELBO does not converge,
proving that SGPR is not close to an exact solution. The model misspecification causes the lengthscale
to continuously shrink, which makes the kernel less low-rank, thereby preventing convergence.’
Figure C.5 shows examples of UCI datasets where SGPR fails to be near-exact. Note that neither do
the lower bounds flatten nor do the upper bounds meet the lower bounds as M increases.

Recommendation 5 [f not all datasets admit a near-exact approximation, methods can be compared
on how many near-exact solutions they provide.

Additional insight can be provided by investigating when an approximation provides near-exact
solutions, and when it does not. This helps to identify different regimes where approximations are
appropriate, and also helps remove selection bias of the datasets that are benchmarked on.

5 Timed Performance Evaluation

Evaluating in the near-exact regime is important in some practical situations, and allows testing of
inherent properties of the approximation, rather than implementation-specific properties. However,
in many practical situations, resources are constrained, and a practitioner may be interested in the
quality of an answer after using a certain amount of resources (e.g. computation time). This question
inherently tests all aspects of an approximation, all the way through to implementation. Not every
practitioner will have the same computation budget.

Recommendation 6 In timed performance evaluations, methods and baselines must be run for an
extended period of time, with the performance being measured at multiple time points.

This can be presented as time-performance curves, with one graph per dataset, or a table with
performance taken at multiple times.

To provide an example of comparisons along our recommendations, we run our baseline procedure
together with a CG-based Iterative GP approximation [Wang et al., 2019], which has two free
approximation parameters: CG residual norm tolerance and preconditioner size. Defaults that were
suggested in the past have been noted to lead to convergence issues or poor performance [Potapczynski
et al., 2021; Artemev et al., 2021]. We use the parameter settings found by Maddox et al. [2021],
who tuned the parameters on the UCI datasets to convergent training and good performance.

Figure C.6 shows time-performance plots for various UCI datasets. Our main message is that this
procedure and presentation show 1) the consistent performance once enough compute is given, which
is consistent with both methods being near-exact; and 2) the precise time-performance trade-off
between different methods for different datasets. New procedures can easily be incorporated in a
similar presentation, and the numbers can also be presented as a table with bold numbers if desired.

6 Conclusion

SGPR is a strong baseline, for which there is strong evidence that it achieves near-exact performance
for many datasets. The main reason for its usefulness as a baseline is that no human intervention

>If misspecification occurs, then perhaps a better kernel should be sought, rather than a better approximation.



is needed as its approximation quality is continuously improved: It only needs to be allowed more
compute, in the form of inducing points. It would be beneficial to develop similar procedures for
other approximations. As a baseline, SGPR may sometimes still require too many inducing points for
it to be practical (section 4.2 and fig. C.2), which provides opportunities for other methods.

More importantly, we suggest a procedure for comparing GP approximations which provides insight
into 1) inherent properties of an approximation, such as whether it can be near-exact (which is
true success in some way); and 2) what the full time-performance trade-off is, which is actionably
useful for users. This provides a more complete picture than only reporting results for a single fixed
computational budget (e.g. fixed inducing points), which is currently common.

Now that GP approximations are becoming very accurate, we believe that such a thorough benchmark-
ing protocol should be standard. Methods should be published on based on practical strength (which
includes the implementation properties), or beneficial mathematical properties. Our recommendations
give a view of both, which we believe would be an improvement over current common standards.
Nevertheless, there are still important effects that we do not take into account (appendix A).
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A Uninvestigated Issues

Several important issues that affect the assessment of a Gaussian process model have not been
investigated in this short paper. We provided experimental results for Iterative GP [Wang et al., 2019]
and our SGPR baseline procedure, but did not further analyse the similarities between settings where
one outperformed the other. Such characterisations are really helpful to understand the trade-offs
between methods, and we recommend this to be investigated when new methods are proposed.

One very large uninvestigated effect is the interplay between kernel choice and approximation.
For SGPR, the number of required inducing points depends strongly on the kernel choice. In our
UCT experiments, we follow the literature and only investigate a fixed kernel (here, the Squared
Exponential). However, in some cases, finding a more well-specified kernel can also make a model
much cheaper to approximate. An example of this is shown in fig. C.3, where we use an ArcCosine(0)
kernel for a step function, which can then be approximated perfectly with two inducing points, rather
than the failure case in fig. C.2. Perhaps the current approach of investigating GP approximations in
isolation of kernel search has fundamental barriers.

Finally, we did not take into account the prediction time. During our training procedure we logged
test set metrics, which took significant time, particularly for the recommended Iterative GP procedure
[Maddox et al., 2021]. We did not include this time in the measured training time curves, to simulate
a situation where a practitioner continues to run until a specified point, at which point performance
is measured. Perhaps test-time performance experiments should be included following similar
recommendations as the ones we already make.

B Experimental Setup

For our SGPR baseline method, we sequentially train SGPR models with [10, 20, 50, 100, 200, ...,
5000] inducing points using the greedy variance init strategy from [Burt et al., 2020]. We evaluate
NLPD and RMSE on the test sets at the end of model training for each M, and plot the final ELBO
along with these metrics. This explains the steps in the time versus performance plots (fig. C.6).

For the CG-based Iterative GP, we use the GPyTorch [Gardner et al., 2018] implementation of Wang
et al. [2019]. We changed the default settings to match the recommendations from Maddox et al.
[2021], with the exception for the datasets with over 30,000 examples, where we limit the number of
total training steps to 200. We typically found that training had converged by this point. We evaluate
the test metrics every 20 iterations, but as mentioned do not count the time for evaluating test metrics
in our plots for either our baseline or the Iterative GP.
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Figure C.1: SGPR with a Squared Exponential kernel (highest true marginal likelihood) on the toy
1D “snelson” dataset. Left: Example approximate solution. Middle: Upper and lower bounds on
marginal likelihood with varying M. Note that different hyperparameters are found as M increases,
which allows the upper bound to rise, before it eventually converges as the hyperparameters converge.
Right: Hyperparameters with varying M.
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a step dataset. Left: Example approximate solution. Middle: Upper and lower bounds on marginal
likelihood with varying M. Note that different hyperparameters are found as M increases. The upper
and lower bounds do not converge. Right: Hyperparameters with varying M, which do not converge
even when M ~ N.
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Figure C.3: SGPR with a ArcCos-0 kernel (highest true marginal likelihood) on a step dataset. Left:
Example approximate solution. Right: Upper and lower bounds on marginal likelihood with varying
M. Note that different hyperparameters are found as M increases. Note that only two inducing points
are needed for a high-quality solution. The gap in upper and lower bounds is caused by numerical
issues of having so many highly correlated points.

elevators: N = 14939 keggundirected: N = 57247

55000
—5000 50000
] 2]
5 = 45000
& 6000 =
40000 Ff
~7000 = . . 35000 - . .
0 2000 4000 0 2000 4000
M M

Figure C.4: Plots of the ELBO (blue) vs number of inducing points M for the ELEVATORS and
KEGGUNDIRECTED datasets, with the computed upper bounds (orange).
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Figure C.5: Plots of the ELBO (blue) vs number of inducing points M for the KINSNM and KIN40K
datasets, with the computed upper bounds (orange).
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Figure C.6: Plots of LML estimates (with upper bounds dashed), NLPD, and RMSE versus time
for both SGPR (blue) and the conjugate-gradient based iterative GP from Wang et al. [2019]. Final
values are highlighted by pale horizontal lines for the corresponding colors.
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