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Abstract

We study preferential Bayesian optimization (BO) where reliable feedback is lim-
ited to pairwise comparison. An important challenge in preferential BO, which uses
the Gaussian process (GP) model to represent preference structure, is that the pos-
terior distribution is computationally intractable. Existing preferential BO methods
either suffer from poor posterior approximation ignoring the skewness or require
computationally expensive approximation for the exact posterior represented as
a skew GP. In this work, we develop a simple and computationally efficient pref-
erential BO algorithm while keeping the superior optimization performance. The
basic idea is to use a posterior additionally conditioned by a random sample from
the original posterior itself, called hallucination, by which we show that a usual
GP-based acquisition function can be used while reflecting the skewness of the
original posterior. The numerical experiments on the various benchmark problems
demonstrate the effectiveness of the proposed method.

1 Introduction

Preferential Bayesian optimization (BO) has been an attractive approach for solving problems where
reliable feedback is limited to pairwise comparison, the so-called duels. This preference setting often
appears in human-in-the-loop optimization problems such as visual design optimization [19] and
generative melody composition [32] because it is easier for humans to judge which one is better than
to give an absolute rating [17]. The system (i.e., the optimization method) in the human-in-the-loop
optimization presents choices and receives preferential feedback interactively. To reduce the waiting
time for users, the system is required to quickly present the new options to users by learning from the
observed feedback information.

An important challenge in preferential BO, which uses the Gaussian process (GP) model to represent
preference structure, is that the posterior distribution is computationally intractable. The existing
approaches to this difficulty are twofold: The first approach is the Gaussian approximation (e.g.,
Laplace approximation and Expectation propagation) [9, 8], which leads to computationally efficient
preferential BO algorithms [7, 23, 15, 28, 10]. However, the accuracy of the approximation is often
poor [4], as the Gaussian approximation ignores the skewness of the exact posterior represented as a
skew GP [3–5]. The second approach is to directly employ the skew GP model using the Markov
chain Monte Carlo (MCMC) method [3–5]. Although using the skew GP leads to superior optimiza-
tion performance, the MCMC requires a heavy computational time. Reducing the computational
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complexity can be critical in preferential BO because, for example, the computational time directly
becomes the waiting time for users in applications involving human interactions.

In this work, we develop a simple and computationally efficient preferential BO algorithm while
keeping the superior optimization performance coming from skew GP. Our approach mainly relies on
the insight that the skew GP additionally conditioned by variables that control the skewness is reduced
to the standard GP (Proposition 3.1). Then, the proposed method computes an acquisition function
based on the GP conditioned on a random sample from the true posterior, called hallucination.
This reduction via conditioning gives the proposed method the following two strengths: Firstly, the
proposed method can take into account the skewness of the true posterior. Secondly, any powerful
acquisition function developed so far in the standard BO literature (e.g., UCB [30], EI [21], and
TS [26]) can be integrated. Our experiments show that the proposed method achieves a significant
speedup in terms of computational time and at least competitive performance in terms of sample
complexity over the state-of-the-art preferential BO approaches [15, 31, 4, 10].

2 Background

We consider that the preferential relation is modeled by a latent function f : X 7→ R, where X ∈ Rd

is input domain. Our goal is to maximize the latent function as

x∗ = argmax
x∈X

f(x),

through the dueling feedback, x ≻ x′, which implies x is preferable to x′.

We assume that f is a sample path of GP(0, k) with some stationary kernel k : X ×X 7→ R. Suppose
that we have multiple duels Dt := {xi,w ≻ xi,l}ti=1, where xi,w is the winner of the duel and xi,l is
the loser. Following [9, 8], we assume that the duel is determined as follows:

xi,w ≻ xi,l ⇔ f(xi,w) + ϵw > f(xi,l) + ϵl,

where i.i.d. additive noise ϵw and ϵl follow the normal distributionN (0, σ2
noise). This is equivalent to

assuming that the preferences are obtained by which a direct observation y = f(x) + ϵ is bigger or
smaller, where ϵ ∼ N (0, σ2

noise).

The exact posterior distribution p(f | Dt) is skew GP, as shown in [4, 5]. By the definition, the
conditioning by duels Dt can be rewritten as {vi < 0}ti=1, where vi := f(xi,l) + ϵl − f(xi,w)− ϵw.
For brevity, we denote {vi < 0}ti=1 as vt < 0, where vt := (v1, . . . , vt)

⊤. Then, the posterior
density function for all x ∈ X is written as,

p (f(x) | Dt) = p (f(x) | vt < 0) =
Pr (vt < 0 | f(x)) p (f(x))

Pr(vt < 0)
.

Then, vt, which we referred to as the latent truncated variable, controls the skewness. Since the prior
for vt and f(x) is multivariate normal (MVN) distribution, both Pr(vt < 0) and Pr (vt < 0 | f(x))
are cumulative distribution function (CDF) of MVN (See Appendix A for the details). Furthermore,
statistics of f(x) | vt < 0, such as mean and variance, is computed using CDF of MVN [2].
However, CDF of MVN [12, 11] is computationally expensive. Thus, Benavoli et al. [4, 5] employed
the posterior sampling-based approximation, for which they showed that the sampling from skew GP
could be performed through the sampling from truncated MVN.

3 Preferential Bayesian optimization with hallucination believer

The state-of-the-art preferential BO methods are based on Gaussian approximation or MCMC-based
posterior approximation. The former suffers poor prediction performance ignoring the skewness of the
posterior, and the latter requires heavy computational time. In this work, we propose a computationally
efficient preferential BO method while taking into account the skewness in a randomized manner.

Motivation for the proposed method comes from the following observation: The skew GP conditioned
by the latent truncated variable is reduced to the standard GP (Proposition 3.1). The important thing
is to condition the hallucination from the true posterior, which makes taking into account skewness
possible. Algorithm 1 shows the procedure of the proposed method, hallucination believer (HB). The
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Algorithm 1 Hallucination believer for preferential BO

Require: D0 = {x0,w,x0,l}, X
1: for t = 1, . . . do
2: x

(1)
t ← xt−1,w

3: Generate ṽt−1 from p(vt−1 | vt−1 < 0) and ỹ
(1)
t from p(y

(1)
t | ṽt−1), respectively

4: x
(2)
t ← argmaxx∈X α(x) based on the GP f | ṽt−1, ỹ

(1)
t

5: Set xt,w and xt,l as the winner and loser of the duel between x
(1)
t and x

(2)
t , respectively

6: end for

proposed method iteratively selects a pair of inputs by the following two steps: (i) Select the winner
of the past duels as the first point1 (line 2). (ii) Using the posterior distribution conditioned by the
hallucination, select the point that maximizes the acquisition function as the second point (lines 3-4).
We can use an arbitrary computationally efficient and powerful acquisition function for the usual BO
due to the reduction via the conditioning.

3.1 Hallucination believer

The following proposition shows that conditioning the latent truncated variables reduce the skew GP
to the standard GP. The proof is shown in Appendix A.
Proposition 3.1. Exact posterior distribution additionally conditioned by vt−1 is p(f | vt−1 <
0,vt−1) = p(f | vt−1), which is a GP.

Still, there remains the question of what value should be conditioned to the skew GP. For example, if
we condition on a constant value, such as the posterior mean, the proposed method ignores skewness
and the optimization performance will deteriorate. To reflect the skewness of the true posterior,
we condition the hallucination ṽt−1 generated from the posterior p(vt−1 | vt−1 < 0). Thus,
the skewness is incorporated in a randomized manner by ṽt−1 affecting to the GP p(f | vt−1 =

ṽt−1) according to the true posterior. In addition, we conditioned y
(1)
t := f(x

(1)
t ) + ϵ so that a

more exploratory x
(2)
t should be selected. Note that ỹ(1)t can be easily generated from the normal

distribution p(y
(1)
t | ṽt−1). See Appendix A for the derivation of GP p(f | ṽt−1, ỹ

(1)
t ).

We employed Gibbs sampling [20] for the sampling from the truncated MVN p(vt−1 | vt−1 < 0),
whose details are shown in Appendix C. Although the sampling ṽt−1 needs MCMC, HB needs
only one sample, whose sampling is sufficiently fast (See Appendix E.1 for a computational time
of MCMC). Thus, HB is highly efficient compared to [4, 5], which need many MC samples. HB
is related to the kriging believer [27], which is a well-known heuristic in parallel BO literature, in
the sense that some additional conditioning to the posterior is performed. We provide the detailed
discussion in Appendix B.

4 Experiments

We investigate the effectiveness of the proposed method through comprehensive numerical experi-
ments. We employed the eight benchmark functions. In this section, we show the results for Rastrigin,
Shekel, Ackley, and Hartmann6 functions, and others are shown in Appendix E. We performed the
proposed methods combining expected improvement (EI) [21] and upper confidence bound (UCB)
[30], denoted as HB-EI and HB-UCB, respectively. We employed the baseline methods, EI [7],
MUC [10], TS-MUC2 [15], KSS [31], DuelTS [4], DuelUCB [4], and EIIG3 [4], where DuelTS,
DuelUCB, and EIIG are based on skew GP and others employed Laplace approximation. As a perfor-
mance measure, we used the regret defined as f(x∗)− f(x̃t), where x̃t is a recommendation point

1Some prior works [7, 23, 10] employed the maxima of the posterior mean as the first input. In contrast, we
employ the winner so far as the first input, as the posterior mean of skew GP is computationally expensive.

2This method was originally proposed as dueling TS, whose name is same as [4]. To distinguish them, we
denote TS-MUC since this method selects the first input by TS and the second input by MUC.

3Benavoli et al. [4, 5] proposed the acquisition function that EI minus information gain (IG). We conjecture
that this is a typo since both EI and IG should be large. Thus, we used a modified one that EI plus IG.
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Figure 1: Performance comparison of the proposed method (HB-EI and HB-UCB) with the state-of-
the-art preferential BO methods. The horizontal axis represents (a) the computational time (sec) and
(b) the number of iterations. The vertical axis represents the regret, which is the smaller, the better it
is. Suffix “-L” in the method name indicates using Laplace approximation.

at t-th iteration. We report the mean and standard error of the regret over 20 random initialization,
where the initial duel is obtained as a uniformly random input pair. The details for settings of the
kernel function, the baseline methods, and the recommendation point x̃t are shown in Appendix D.

We first compare the Laplace approximation-based methods (denoted by Suffix “-L”) with the skew
GP-based methods including the proposed method. Figure 1(b) shows that the Laplace approximation-
based methods are outperformed by the skew GP-based methods, which demonstrates the poor quality
of the Laplace approximation. Next, among the skew GP-based methods, we compare the proposed
methods with the MCMC-based methods [4, 5]. Figure 1(a) shows that the proposed method
outperforms the other baseline methods including MCMC-based methods, which demonstrates the
computational efficiency of the proposed method compared to MCMC-based methods. Furthermore,
from the result of Figure 1(b), the proposed method is at least competitive in terms of iteration (i.e.,
sample complexity). These results indicate that the proposed method is highly efficient in practice
compared to the existing preferential BO algorithms.

5 Conclusion

In this work, we developed a simple and computationally efficient preferential Bayesian optimization
method, called hallucination believer (HB). We reduce the skew GP to the standard GP by condition-
ing the hallucination for the latent truncated variables, which leads to computational efficiency and
superior optimization performance coming from the skew GP. The numerical experiments demon-
strate the effectiveness of the proposed method in terms of both computational time and sample
complexity. Interestingly, HB with a roughly approximated prediction by the hallucination achieves
the performance that is comparable to the MCMC-based methods based on the exact posterior. There-
fore, conditioning the hallucination can be more important than just making accurate predictions in
preferential BO, and investigating why the conditioning can achieve such good sample complexity is
one of the interesting future directions.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] Our experiments can be performed
in usual laptop.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Details of skew GP

Let us consider the prediction with the test points Xtes := (x1,tes, . . . ,xntes,tes)
⊤, where ntes ∈ N.

We define the matrix of the inputs X :=
(
x1,tes, . . . ,xntes,tes,x1,w, . . . ,xt,w,x1,l, . . . ,xt,l

)⊤ ∈
R(ntes+2t)×d, where d is the input dimension. Furthermore, we denote the i-th row of X as Xi.
Then, the prior for f := (f(X0), . . . , f(Xntes+2t))

⊤ ∈ Rntes+2t is,

f ∼ N (0,K),

where (i, j)-th element of K is k(Xi,Xj). Then, f tes and vt are linear combinations of f , the
noise ϵw, and ϵl. Therefore, we see that,[

f tes
vt

]
∼ N (0,Σtes,v), (1)

where

A :=

[
Intes

0 0
0 −It It

]
∈ R(ntes+t)×(ntes+2t),

B :=

[
0 0
0 σ2

noiseI2t

]
∈ R(ntes+2t)×(ntes+2t),

Σtes,v := A
(
K +B

)
A⊤ ∈ R(ntes+t)×(ntes+t),

and Ii ∈ Ri×i is the identity matrix.

Then, we revisit that the posterior p(f tes | vt < 0) is obtained as

p (f tes | vt < 0) =
Pr (vt < 0 | f tes) p (f tes)

Pr(vt < 0)
.

From the prior (1), vt and vt | f tes follow MVN. Therefore, Pr (vt < 0 | f tes) and Pr(vt < 0) are
CDF of MVN. Consequently, we can see that this posterior is a multivariate unified skew normal
distribution [2, 4], with latent skewness dimension t.

Next, we consider the posterior additionally conditioned by vt and prove the Proposition 3.1. First,
for convenience, we define the submatrices as follows:

Σtes,v :=

[
Σtes,tes Σtes,v

Σ⊤
tes,v Σv,v

]
,
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where Σtes,tes ∈ Rntes×ntes ,Σtes,v ∈ Rntes×t,Σv,v ∈ Rt×t. The joint posterior distribution of f tes
and vt is truncated MVN, in which vt is truncated above at 0. From the property of truncated MVN,
Conclusion 5 in [16], the conditional distribution of truncated MVN is truncated MVN keeping the
original truncation, in which the parameters can be computed as with usual MVN. More precisely, by
using equations above Conclusion 5 in [16], we see that

p(f tes | vt,vt < 0) =
p(f tes,vt)∫

Rntes
p(f tes,vt)df tes

,

where, since f tes is not truncated, i.e., f tes ∈ Rntes , the region of integration is Rntes . Therefore, we
obtain

p(f tes | vt,vt < 0) =
p(f tes,vt)

p(vt)

= p(f tes | vt).

Consequently, the conditional distribution p(f tes | vt,vt < 0) is MVN:

f tes | vt,vt < 0 ∼ N (Σ⊤
tes,vΣ

−1
v,vvt,Σtes,tes −Σ⊤

tes,vΣ
−1
v,vΣtes,v),

which is equivalent to the distribution p(f tes | vt). Hence, since above derivation can be applied to
any Xtes, we can see that f | vt is a GP.

By setting xtes as x(1)
t and adding σ2

noise to the variance, we can obtain the posterior p(y
x

(1)
t
| vt−1).

Conditioning y
x

(1)
t

can be performed as same as the derivation of conditional MVN [24].

B Difference between hallucination and kriging believer

Kriging believer (KB) [27] is a well-known heuristic for parallel BO. KB conditions on the ongoing
function evaluation by the posterior mean, and then the next batch point is selected using this GP
conditioned by the posterior mean. Some variants, called constant liar, use some predefined constant
instead of the posterior mean. Furthermore, some studies averaged the resulting acquisition function
value by the sample of the posterior normal distribution [e.g., 29]. These studies aim to guarantee
the diversity of the batch points via penalization by conditioning.

On the other hand, one of the important aims of HB is to reduce the skew GP to the standard GP.
For this purpose, we conditioned the latent truncated variable vt, which is not related to parallel
BO. Furthermore, in preferential BO, if we conditioned the constant including the posterior mean,
preferential BO methods cannot consider the skewness. Thus, the conditioning by the constant results
in poor performance as with Gaussian approximation. On the other hand, although averaging by the
samples from the posterior is promising, it requires huge computational time for MCMC with respect
to skew GP. Hence, we employed the conditioning by the hallucination of vt. The conditioning of
y
x

(1)
t

is used for the same purpose of KB, i.e., the penalization.

C Gibbs sampling for truncated MVN

For the sampling from truncated MVN, Benavoli et al. [4, 5] used linear elliptical slice sampling
(LinESS) [13], the variant of elliptical slice sampling [22]. On the other hand, many sampling methods
for truncated MVN have been proposed and are based on Gibbs sampling [1, 6, 14, 18, 20, 25]. In
this work, we employed standard Gibbs sampling combining the efficient rejection sampling for uni-
variate truncated normal [20], which uses several proposal distributions depending on the truncation.
We empirically observed that the Gibbs sampling works better than LinESS in terms of both the
autocorrelation and computational time, which are shown in Appendix E.1.

Gibbs sampling is often used for the sampling of truncated MVN [1, 20, 14, 6]. Let us consider the
sampling from truncated MVN p(v|v < 0), where original v ∈ Rn follows MVN below:

v ∼ N (0,Σ),

where Σ ∈ Rn×n is an arbitrary covariance matrix. Let vj and v−j be j-th element of v and the
vector consisting of the elements except for vj , respectively. In Gibbs sampling, we repeat the
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Figure 2: The trace plot (top) and autocorrelation plot (bottom), in which the Hartmann6 function is
used with 50 uniformly random duels.

sampling vj | v−j , vj < 0, which follows uni-variate truncated normal distribution. The conditional
distribution vj | v−j ∼ N (µj , σ

2
j ), where µj and σ2

j are computed efficiently by computing Σ−1

once [Section 5.4.2 in 24]. Algorithm 2 shows the procedure of Gibbs sampling, in which [·]j and
[·]jj imply the j-th element of the vector and (j, j)-th element of the matrix, respectively. For the
sampling from uni-variate truncated normal, we employed the efficient rejection sampling [Section 2.1
in 20], which uses several proposal distributions depending on the truncation.

Algorithm 2 Gibbs sampling for truncated MVN

Require: v(0), Σ
Compute Σ−1

for i = 1, . . . do
v(i) ← v(i−1)

for j = 1, . . . , n do
µ
(i)
j ← [Σ−1v(i)]j/[Σ

−1]jj

Set v(i)j by the sampling from N (µ
(i)
j , σ2

j = 1/[Σ−1]jj) with truncation above at 0
end for

end for

D Experimental settings

All the details of benchmark functions are shown in https://www.sfu.ca/~ssurjano/
optimization.html. In each function, we used the RBF kernel with automatic relevance determi-
nation [24], whose hyper-parameters are chosen using the usual marginal likelihood maximization of
the GP regression model with a direct observation y beforehand. Although [4] originally employed
LinESS for the sampling from truncated MVN, we employed Gibbs sampling in DuelTS, DuelUCB,
and EIIG as with our proposed methods, for a fair comparison. For the parameters for Gibbs sampling,
burn-in is 1000, thinning is 10, and MC sample size for DuelUCB and EIIG is 1000. Other settings
for existing methods, such as the percentage for UCB, are set as with the suggestion from the paper.
We set the recommendation point x̃t as xt,w in DuelTS, DuelUCB, EIIG, HB-EI, and HB-UCB
following [4]. In other methods, x̃t is set by the maximization of the posterior mean computed by
Laplace approximation.

E Additional experiments

In this section, we provide additional experimental results.
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Table 1: The computational time of MCMC for Figure 2. The mean and standard error with 20
random trials are shown.

LinESS Gibbs sampling
Computational time (sec) 1.70± 0.04 0.75± 0.04

E.1 Comparison between Gibbs sampling and LinESS

We compared the Gibbs sampling and LinESS for truncated MVN. For LinESS, we used the imple-
mentation by [4, 5] (https://github.com/benavoli/SkewGP with BSD-3-Clause license).

For comparison, we generate 50 uniformly random duels using the Hartmann6 function. Then, we
perform the sampling of vt | vt < 0. Figure 2 shows the trace and autocorrelation plot in 1000
iterations for the first element of vt. We can observe that Gibbs sampling has lower autocorrelation
than LinESS. This tendency can be confirmed in other elements. Furthermore, Table 1 shows the
mean and standard error of the computational time for 20 random trials. If we consider that the
burn-in is set as 1000, this time can be seen as a computational time to generate one sample. We
confirmed that Gibbs sampling is 2x faster than LinESS.

Note that LinESS was originally proposed for truncated MVN with many linear truncations [13].
LinESS is expected to be effective when the number of truncations is much larger than the dimension
of MVN since LinESS is a rejection-free sampling method in contrast to Gibbs sampling. Inversely,
if the number of truncations is huge, a rejection sampling-based Gibbs sampling suffers a low
acceptance rate. On the other hand, in this case for vt | vt < 0, both dimensions are t. We conjecture
that this is the reason why Gibbs sampling is efficient compared to LinESS in our experiments.

E.2 Experimental results for other benchmark functions

Figure 3 shows the results for Bukin, Schwefel, Hartmann3, and Hartmann4. In these plots, we can
still confirm that the proposed methods, HB-EI and HB-UCB, show superior performance in terms of
both computational time and iteration.
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Figure 3: Additional performance comparison of the proposed method (HB-EI and HB-UCB) with
the state-of-the-art preferential BO methods. The horizontal axis represents (a) the computational
time (sec) and (b) the number of iterations. The vertical axis represents the regret, which is the
smaller, the better it is. Suffix “-L” in the method name indicates using Laplace approximation.
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