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Summary

c-TPE: Generalizing Tree-structured Parzen Estimator with Inequality Constraints

for Continuous and Categorical Hyperparameter Optimization

➢ Propose an extension of tree-structured Parzen estimator (TPE), which uses the 

density ratio of good and bad groups, to inequality constrained optimizations

➢ Integrate the acquisition function (AF) of constrained Bayesian optimization (BO) by 

Gardner et al.

➢ Modify the AF and the split of good and bad groups to enhance the performance

1. Use relative density ratios instead of density ratio

2. Take a certain number of feasible solutions instead of just taking top solutions

➢ Demonstrate that our method exhibits:

1. much better performance than a naïve extension,

2. the best average rank among various methods.

Tree-structured Parzen estimator (TPE)

➢ Assume we minimize 𝑦 = 𝑓(𝒙) and have a set of observations 𝒟 ≔ 𝒙𝑛, 𝑦𝑛 𝑛=1
𝑁

➢ Define a lower group 𝒟(𝑙) as top-𝜸 quantile and a greater group 𝒟(𝑔) as the rest

➢ Build kernel density estimators (KDEs) using 𝒟(𝑙) and 𝒟(𝑔) (𝑁(𝑙) ≔ 𝒟 𝑙 , 𝑁 𝑔 ≔ |𝒟(𝑔)|):
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➢ At each iteration, pick the configuration with the best density ratio 𝑝 𝒙 𝒟 𝑙 /𝑝(𝒙|𝒟(𝑔))
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Density ratio 𝑟 𝒙 𝒟 ≔ 𝑝(𝑥|𝒟 𝑙 )/𝑝(𝑥|𝒟(𝑔))

Naïve constrained TPE (Naïve c-TPE)

➢ The AF of TPE (density ratio) is known as expected improvement (EI), but the AF is, in 

fact, probability of improvement (PI) at the same time (proof in the paper)

➢ Constrained BO by Gardner et al. computes the AF via the product of the AFs for the 

objective 𝑓 and constraints 𝑐𝑖 (for 𝑖 = 1,… , 𝐶) (expected constraint improvement (ECI))

➢ Hence, just taking the product of density ratios would be the naïve version:
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➢ 𝑟0(𝒙|𝒟) is the density ratio for 𝑓 and 𝑟𝑖(𝑥|𝒟) (𝑖 ∈ {1,… , 𝐶}) is that for constraints

➢ Here is an example for the objective with one constraint 𝑐 𝑥 ≤ 𝑐⋆

➢ Compute 𝑟0(𝑥|𝒟) by 𝑝 𝑥 𝒟𝑓
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Modification I: Relative density ratio

➢ Use relative density ratio 𝑟rel(𝒙|𝒟) =
𝑝 𝒙 𝒟 𝑙

𝛾𝑝 𝒙 𝒟 𝑙 + 1−𝛾 𝑝 𝒙 𝒟 𝑔 instead of density ratio

➢ 𝑟rel 𝒙 𝒟 = 𝑟(𝒙|𝒟) at 𝛾 = 1, so generalize with TPE when the whole domain is feasible

➢ For tight constraint, reduce the contribution from the objective

➢ For loose constraint, reduce the contribution from the constraint
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Modification II: Split algorithm

➢ Take until the top-𝛾 quantile feasible solutions as 𝒟𝑓
𝑙

instead of the top-𝛾 quantile 

solutions

➢ Guarantee 𝒟𝑓
𝑙

to have at least one feasible solution and thus c-TPE recognizes 

promising regions with feasible solutions and thus more robust
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➢ For large overlap of promising regions and feasible domain is large, not a big problem

➢ For small overlap, guide to the overlap eventually
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Experiments on tabular benchmarks

➢Summary of our modifications
Modification I (relative density ratio)

1. allow stable performance over various constraint levels

2. generalize c-TPE with TPE when the whole domain is feasible

Modification II (new split algorithm)

3. promote the exploration in feasible domain

4. recover the original split when the whole domain is feasible

➢Setup
- 9 benchmarks: HPOlib (4 datasets), NAS-Bench-101 (2 search spaces),

NAS-Bench-201 (3 datasets)

- 3 constraints: 1. runtime, 2. network size, 3. runtime and network size

- 9 different level of thresholds (10% is the tightest, 90% is the loosest constraint)

- 50 different random seeds to test by the Wilcoxon signed-rank test

• Results
1. Exhibit the best average rank with statistical significance over 81 settings

2. Show stable performance (average rank) over various constraint levels 

(Modification I)

3. Maintain the performance of the vanilla TPE, which optimizes as if there is no 

constraint, when the constraint level is small (Modification I)

4. Demonstrate good performance on tight constraints on NAS-Bench-201, which 

we check it has the small overlap (Modification II)

5. For high dimensions (26 dimensions in NAS-Bench-101), c-TPE did not show the 

distinctive performance and it might be better to search more greedily especially 

in loose constraint settings (90% in our case)

https://github.com/nabenabe0928/constrained-tpe
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