

c-TPE: Generalizing Tree-structured Parzen Estimator with Inequality Constraints for Continuous and Categorical Hyperparameter Optimization

Shuhei Watanabe, Frank Hutter { watanabs | fh }@cs.uni-freiburg.de Department of Computer Science, University of Freiburg, Germany

Summary

- Propose an extension of tree-structured Parzen estimator (TPE), which uses the density ratio of good and bad groups, to inequality constrained optimizations
- Integrate the acquisition function (AF) of constrained Bayesian optimization (BO) by Gardner et al.
- > Modify the AF and the split of good and bad groups to enhance the performance
 - 1. Use relative density ratios instead of density ratio
 - 2. Take a certain number of feasible solutions instead of just taking top solutions
- Demonstrate that our method exhibits:
 - 1. much better performance than a naïve extension,
 - 2. the best average rank among various methods.

Tree-structured Parzen estimator (TPE)

Modification II: Split algorithm

- > Take until the top- γ quantile feasible solutions as $\mathcal{D}_{f}^{(l)}$ instead of the top- γ quantile solutions
- > Guarantee $\mathcal{D}_{f}^{(l)}$ to have at least one feasible solution and thus c-TPE recognizes promising regions with feasible solutions and thus more robust

Assume we minimize y = f(x) and have a set of observations D := {(x_n, y_n)}^N_{n=1}
Define a lower group D^(l) as top-y quantile and a greater group D^(g) as the rest
Build kernel density estimators (KDEs) using D^(l) and D^(g) (N^(l) := |D^(l)|, N^(g) := |D^(g)|):

$$p(\mathbf{x}|\mathcal{D}^{(l)}) = \frac{1}{N^{(l)}} \sum_{\mathbf{x}_n \in \mathcal{D}^{(l)}} k(\mathbf{x}, \mathbf{x}_n) , p(\mathbf{x}|\mathcal{D}^{(g)}) = \frac{1}{N^{(g)}} \sum_{\mathbf{x}_n \in \mathcal{D}^{(g)}} k(\mathbf{x}, \mathbf{x}_n)$$

> At each iteration, pick the configuration with the best density ratio $p(x|\mathcal{D}^{(l)})/p(x|\mathcal{D}^{(g)})$

Naïve constrained TPE (Naïve c-TPE)

- The AF of TPE (density ratio) is known as expected improvement (EI), but the AF is, in fact, probability of improvement (PI) at the same time (proof in the paper)
- Constrained BO by Gardner et al. computes the AF via the product of the AFs for the

For large overlap of promising regions and feasible domain is large, not a big problem
For small overlap, guide to the overlap eventually

Experiments on tabular benchmarks

- Summary of our modifications
 - Modification I (relative density ratio)
 - 1. allow stable performance over various constraint levels

objective f and constraints c_i (for i = 1, ..., C) (expected constraint improvement (**ECI**)) > Hence, just taking the product of density ratios would be the naïve version:

 $\prod_{i=0}^{C} r_i(\boldsymbol{x}|\mathcal{D})$

> $r_0(x|\mathcal{D})$ is the density ratio for *f* and $r_i(x|\mathcal{D})$ (*i* ∈ {1, ..., *C*}) is that for constraints

> Here is an example for the objective with one constraint $c(x) \le c^*$ • Compute $r_i(x|\mathcal{D})$ by $r_i(x|\mathcal{D}^{(l)})$ ($r_i(\mathcal{D}^{(l)})$) and $r_i(x|\mathcal{D})$ by $r_i(x|\mathcal{D}^{(l)})$ ($r_i(\mathcal{D}^{(l)})$).

 $\succ \text{Compute } r_0(x|\mathcal{D}) \text{ by } p\left(x\left|\mathcal{D}_f^{(l)}\right)/p\left(x\left|\mathcal{D}_f^{(g)}\right) \text{ and } r_1(x|\mathcal{D}) \text{ by } p\left(x\left|\mathcal{D}_c^{(l)}\right)/p\left(x\left|\mathcal{D}_c^{(g)}\right)\right)$

Modification I: Relative density ratio

2. generalize c-TPE with TPE when the whole domain is feasible **Modification II** (new split algorithm)

- 3. promote the exploration in feasible domain
- 4. recover the original split when the whole domain is feasible

> Setup

- 9 benchmarks: HPOlib (4 datasets), NAS-Bench-101 (2 search spaces), NAS-Bench-201 (3 datasets)
- 3 constraints: 1. runtime, 2. network size, 3. runtime and network size
- 9 different level of thresholds (10% is the tightest, 90% is the loosest constraint)
- 50 different random seeds to test by the Wilcoxon signed-rank test

Results

- 1. Exhibit the best average rank with statistical significance over 81 settings
- 2. Show stable performance (average rank) over various constraint levels (Modification I)
- 3. Maintain the performance of the vanilla TPE, which optimizes as if there is no constraint, when the constraint level is small (Modification I)
- 4. Demonstrate good performance on tight constraints on NAS-Bench-201, which we check it has the small overlap (Modification II)
- 5. For high dimensions (26 dimensions in NAS-Bench-101), c-TPE did not show the distinctive performance and it might be better to search more greedily especially in loose constraint settings (90% in our case)

For tight constraint, reduce the contribution from the objective
 For loose constraint, reduce the contribution from the constraint

https://github.com/nabenabe0928/constrained-tpe