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Abstract

Complex nonlinear time-series data can be effectively modeled by Switching Lin-
ear Dynamical System (SLDS) models. In trying to allow for unbounded complex-
ity in the discrete modes, most approaches have focused on Dirichlet Process mix-
ture models. Such non-parametric Bayesian models restrict the distribution over
dynamical modes to be exchangeable, making it difficult to capture important tem-
porally and spatially sequential dependencies. In this work, we address these con-
cerns by developing the non-exchangeable SLDS (neSLD) model class effectively
extending infinite-capacity SLDS models to capture non-exchangeable distribu-
tions over dynamical mode partitions. Importantly, from this non-exchangeability,
we can learn transition probabilities with infinite capacity that depend on observa-
tions or on the continuous latent states. We leverage partial differential equations
(PDE) in the modeling of latent sufficient statistics to provide a Markovian formu-
lation and support efficient dynamical mode updates. Finally, we demonstrate the
flexibility and expressivity of our model class on synthetic data.

1 Introduction

Partitioning experience into coherent clusters of observations is a guiding principle of learning. Mod-
els that can identify such modes of activity and allow for different continous dynamical behavior for
each have found ubiquitous use in modern machine learning methods [1, 2, 3, 4]. In parallel, re-
cent work in classical conditioning [5, 6] have focused on partitioning of observations into coherent
clusters through generative mixture processes, using a Hierarchical Dirichlet process prior (HDP)
over the latent causes [7]. Bridging such non-parametric Bayesian modeling techniques with dis-
crete mode driven continuous latent-state models remains an open challenge [2]. Specifically, how
to introduce recurrent connections to use current internal representations to guide updates of the
underlying discrete modes remains unsolved. This is what this work focuses on, leveraging non-
exchangeable infinite capacity partitioning processes [8].

1.1 Preliminaries

In this work, we focus on fully observable time-stamped data {(tn,yn)}Nn=1. We consider a (re-
current) Switching Linear Dynamical System model as the generative model for the data, which is
defined by

zn+1 ∼ P (zn+1|zn,xn) (1)

xn+1 = A(zn)xn + a(zn) + ϵn (2)

at time n ∈ {0, . . . , N}, with discrete dynamical modes zn ∈ {1, 2, . . . ,K} (K ∈ N an hyper-
parameter), continuous latent dynamics xn with Gaussian noise ϵn ∼ N (0,Σx), and outputs as
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linear Gaussian readout from those dynamics yn = Cxn + c + ωn with ωn ∼ N (0,Σy). Con-
jugate matrix normal inverse Wishart (MNIW) priors are normally placed on the linear recurrent
continuous dynamics and output parameters for Bayesian inference. The discrete modes zn follow
Markovian dynamics with a categorical distribution that can depend on zn only (SLDS), or include
a dependence on the previous continuous latent states xn−1 (rSLDS, Ref. [1]).

To allow infinite mode cardinality in such mode-driven architectures, most approaches have focused
on non-parametric extensions based on Dirichlet Processes (DP) (e.g. [2]). DP mixture models
provide a powerful random measure over clusterings [9, 10, 7], and in practice sequential sampling
from a draw from a DP can be defined through the Chinese Restaurant Process (CRP, details in
Appendix §4.1). However a key limitation of the CRP is that it induces a joint probability over
cluster assignments that is invariant to the order of allocations. We call this property exchangeability.
This enforces a strong and limited prior on distributions of partitions that can arise from this model.
Furthermore, the purpose of recurrence is to actively control the dynamical mode transition, in such
a way that fundamentally breaks exchangeability.

Ref. [8] offer an alternate formulation that bypasses this exchangeability property by considering
cluster assignments with each-other. At a given time step n, this distance-dependent CRP (ddCRP,
[8]) assigns time step i ∈ [n] with ci ∈ [n] following

p(ci = j|D,α, β) ∝
{
f(Dij ;β) if i 6= j

α else
(3)

with distance matrix Dij , decay function f(·;β) and decay parameter β > 0. As we consider time-
stamped data, we set Dij = ti − tj for i ≥ j, and let f(Dij) = 0 if i < j to enforce sequentiality
(no step is assign with future steps). We finally use the entire history c:n = {c:n−1, cn} of pairwise
assignments to perform clustering, and denote zi the cluster assignment of time step i,

Z : c:n 7→ z:n (4)

and thereby setting zn.

2 Non-exchangeable infinite-mode switching linear dynamics

The central idea being targeted is that of the exchangeability in the order of the discrete modes
zn, a challenging assumption in the modeling of complex time-stamped dependencies. To this end,
we introduce non-exchangeable switching linear dynamics (neSLD1) models, which combine the
distance-dependent CRP with the SLDS, and most especially, the rSLDS.

A reasonable first step towards extending the SLDS model to non-exchangeable and infinite capac-
ity modes is to combine the dynamical mode assignments zi from (3) and (4) with the continuous
latent dynamics xi in (2). Together this defines the generative model for a naive neSLD class (see
Appendix Fig. 3A). One can introduce recurrence by parameterizing the decay function f and allow-
ing the decay parameter to depend on the previous continuous states, thus introducing a dependency
cn ← xn+1. However, performing Bayesian inference in this model, while tractable, is of signif-
icant computational complexity. Indeed, we show in Appendix §4.2.1 that for appropriate choices
of decay function f , we can leverage Pólya-gamma augmentation following [11, 1] to handle non-
Gaussian factors emerging from recurrence. Unfortunately the resulting Gaussian augmentation
grows quadratically with the number of steps considered, at each time step. Luckily as we’ll see
below, we can use sufficient statistics and recurrent dynamics to circumvent this problem.

2.1 Partial differential equations for neSLD modeling

To remedy the challenges arising out of a naive combination of the original ddCRP and SLDS
models, notice that we can write the cluster allocations (eq. 3-4) directly through an influence
function

w : J × R+ → R+, w : (j, t) 7→
∑

{i : ti≤t,zi=j}

f(t− ti;β)

1To be read as Nestled.
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Figure 1: Modeling the influence function w(j, t) as a solution to the heat equation. (top-right) A
sample trajectory of conventional choice-driven exponential decay. (bottom-right) Different prob-
ability profiles w(·, t) for fixed t over U . Red bar indicates the increase in weight from a choice of
mode j, which also increase the probability of “nearby” modes.

with distance function f(·;β) and decay parameter β > 0 such that

p(zn = j|c:n, α, β) = p(zn = j|w(·, tn), α, β) ∝
{
w(j, tn;β) if j in history
α else

(5)

thereby making w(·, tn) a sufficient statistic, the use of which makes the entire process Markovian.
Setting f(x;β) = exp(−βx) to be an exponentially decreasing function, we can rewrite w(j, t)
above as a solution to the continuous time ODE

ẇ(j, t) = −βw(j, t) + 1{zn=j} (6)

with càdlàg trajectories w(j, t) in time t, for j ∈ J . The inputs 1{zn=j} ∈ L1 represent a point
bump in the influence function w at the mode zn ∈ J , increasing the weight of this mode for future
time steps (see Fig. 1 for a visualization). As we show in Appendix §4.3, we can model the sufficient
statistic to evolve according to a PDE, the heat equation. In doing so we obtain a compact form to
express the time evolution, which satisfies (eq. 6), and how the trajectories w(j, ·) relate to one
another for pairs in J . Finally, treating w(·, t) as a function over a continuous dynamic mode space
allows to naturally restrain it to a discrete and infinite number of modes.

We implement such sufficient statistic w following heat-equation time dynamics through finite dif-
ference methods. First, let w(j +∆j, tn +∆t) =: wn+1(j +1) be our discrete approximation. We
then use a finite approximation of the derivative and central difference approximation to the second
order spatial partial derivative to obtain the solution

wn+1 = Uwn, U = tridiag(β, 1− 2β, β)

where β = γ ∆t
∆x2 . We impose ∆t ≤ ∆x2

4γ as a general requirement for stability, and let ∆x be
adjusted accordingly given γ (model parameter) and ∆t (data parameter). Inputs can be added to
drive the system, including (1) the desired 1zn=j adding self-reinforcement to the system, and (2)
the past internal states encoded by a matrix R ∈ RJ×Nx for recurrence. In all, the dynamics of the
sufficient statistic wn follow

wn+1 = Uwn + κ1zn=j +Rxn

with parameters of decay β > 0 and self-reinforcement κ ∈ R. Dynamical modes zn are then
sampled according to (eq. 5), with final random transition parameter α > 0.

3 Experiments and Results

We test the validity and performance of our neSLD model class on synthetic data. We consider the
Synthetic NASCAR experiment used in [1], where the data consists of toy stock car trajectories
on a NASCAR track. The true dynamics are sampled from a custom rSLDS model and rely on 4
modes z, but conceptually 2 states use similar linear dynamics (center dynamics during the turn).
We use for comparison the SLDS and rSLDS models, and train all models via variational inference
by maximizing the Evidence Lower Bound (ELBO) using Laplace-EM from [4].
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Figure 2: NASCAR experimental results. (a) Sample xt dynamics from trained models. True data
resembles the neSLD dynamics. (b) ELBO attained by each model, over 5 seeds. Higher is better.
(c) True and inferred neSLD dynamical modes zn. (d) Sorted histogram of zn occupancy.

For a similar number of dynamical modes, we find the neSLD model to be able to match or exceed
the rSLDS model in terms of ELBO (Fig. 2b), and find sample trajectories to provide a good qualita-
tive fit to the true xt state dynamics (Fig. 2a, other seeds in Appendix Fig. 5). Increasing the number
of modes to K = 8, we find that it accurately inferred the active states (Fig. 2c), indeed occupying
a lower number of states that the K prescribed (see occupancy curve Fig. 2d).

4 Conclusion

We note that the discrete and finite domain representation of w(·, t) that we use does requires the
practitioner to set the number of states K ahead of training. However such value serves only as
an upper bound, as the model sequentially adds states as needed, and we showed that it infers the
required number of truly occupied states. For an infinite mode domain while still maintaining some
degree of finite representation for implementation purposes, one can turn to a truncated Fourier series
expansion of w(·, t). We refer to Appendix §4.3 for details on such a formalism and how external
inputs would be treated. Future work would aim to integrate this framework into the neSLD model
class, and test the performance on more realistic tasks.

In closing, in this work we introduce the non-exchangeable SLDS (neSLD) model class, extending
the SLDS model class to allow for non-exchangeable priors over the discrete modes zn with un-
bounded complexity. This non-exchangeability is the key characteristic making it possible to apply
this non-parametric machinery to the the widely used rSLDS model [1]. We first discuss a tractable
Bayesian inference framework for learning in fully connected, “naive”, neSLD models with Pólya
gamma augmentation. While this helps with tractability, it renders the process highly computation-
ally expensive both at generation and inference. To mitigate these problems, we leverage PDE theory
to derive a faster, semi-parametric formulation of sufficient statistics to the dynamical mode updates
in the neSLD model. Finally, we implement and test the flexibility and expressivity of the neSLD
model on a toy task compared to (r)SLDS baselines. We find that it matches performance of the
true underlying model, and accurately infers the number of active states. In all, this demonstrates
the use of PDE-informed modeling in latent generative models of spatio-temporal data and in their
extensions to infinite capacity models.
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Appendix

4.1 Background

Dirichlet Processes (DP) mixture models provide a powerful random measure over clusterings. We
refer to Ref. [9, 10] for a measure-theoretic treatment of DPs, and Ref. [7] for a machine-learning
overview. They can be alternatively defined through the Chinese Restaurant Process (CRP), a pro-
cess akin to the Polya Urn process. The analogy goes as follows : upon entering a restaurant, a
customer i selects to sit at a table k with probability proportional to the number of people already
sat at that table. With some fixed rate α, they may decide to start a new table. Put otherwise, for a
new customer i, its table allocation zi follows

p(zi = k|z:i, α) ∝
{
nk if k ≤ K
α if k = K + 1

(7)

with nk the size of cluster k ∈ [K]. In this work, one should think of tables as clusters or dynamical
modes, and the customers i as time-steps. It can be easily seen that this process induces a joint
probability over cluster assignments that is invariant to the order of customers entering. We call this
property exchangeability. This enforces a strong and limited prior on distributions of partitions that
can arise from this model.

4.2 Modeling details
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Figure 3: Graphical models for the neSLD class. We do not include model parameters. Optional
recurrence indicated in blue. (A) Graphical model of the naive infinite non-exchangeable SLD
(neSLD) model. (B) Markov neSLD model, with discrete approximationwn of the sufficient statistic
w(·, tn) ∈ L1.

We show in Figure 4D how we can effectively control the mode transitions zn → zn+1 by leveraging
the decay parameter β > 0 and the self reinforcement parameter κ.

4.2.1 Tractable Bayesian Inference in Naive neSLD models

To perform inference in the (decay-recurrent)-Naive neSLD model, we leverage message passing to
perform Gibbs sampling. It revolves around the conditional density

p(x1:N |c1:N , z1:N , {y1:N , t1:N}) ∝
N∏

n=1

ψ(xn−1,xn, zn)ψ(xn−1, cn, t:n)ψ(xn,yn)

where ψ(xn,xn+1, cn+1) is the potential from the continuous recurrent dynamics, and ψ(xn, yn)
the evidence potentials. The decay-recurrent connections introduce the dependencies captured in
ψ(xn, cn+1), which adds significant challenges for inference. Without it, in the standard SLDS, the
potentials are all Gaussian, allowing for analytical integration.
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Figure 4: Mode transition control. The transition parameter α = 0.05 unless stated otherwise. Top
subplot indicates when a random transition was triggered, with probability α. (A) “Typical” mode
transitions, with transients until one mode is preferentially reinforced. Reinforcing one mode also
raises the probability of transitioning to nearby modes. (B) α = 1.0, random transitions a.s. (C)
Introduction of weak external inputs u of height κ = 1.0 (green dots). Qualitatively similar to A.
(D) Strong external inputs u of height κ = 100.0 (green dots) dictate mode transitions.

Following [1], we leverage Pólya-gamma augmentation [11] to deal with the non-Gaussian factors.
The key is that instead of performing a categorical choice over a pre-determined set of K dynamical
modes, we perform an association, a categorical choice, with a previous time-step j ∈ {1, . . . , t}.
Because of the conceptual categorical similarities in updating, we find similarities in inference
methodology with the rSLDS. This is where the choice of decay function f comes in, in enforc-
ing that link. This non-Gaussian factor is

ψ(xn−1, cn, t:n) = p(cn|xn−1, t:n) ∝
n∏

j=1

f(tn − tj ;β(xn−1))
I[cn=j]αI[cn=n]

= αI[cn=n]
n−1∏
j=1

(
e[νn]j

1 + e[νn]j

)I[cn=j]

for νn ∈ Rn−1, [νn]j := β(xn−1) · (tn − tj). We can leverage the following integral quantity

(eν)a

(1 + eν)b
= 2−beκν

∫ ∞

0

e−ων2/2pPG(ω|b, 0)dω b > 0, κ = a− b

2

to introduce auxiliary variables {ωj}nj=1 such that the conditional density p(cn+1|xn, t:n+1, ωn)
becomes Gaussian

ψ(xn, cn+1, t:n+1, ωn) ∝ α N (νn | Ω−1
n κn,Ω

−1
n )

where Ωn = diag(ω1:t−1), and [κn]j =
1
2 I[cn = j], κn ∈ Rn. With this augmentation, the required

potentials are Gaussian and the integral can be calculated analytically. We refer to [8] for details on
the handling of messages mn→n+1(cn+1).
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4.3 PDEs formalism and Fourier analysis

We consider a discrete set J of potentially infinite size, as we aim to learn the number of discrete
modes from data. To this end, we treat w : U×R+ → R as a function over both mode space U ⊂ R
open set and time t. The mode space U encompasses J , and we consider w.l.o.g. U = (0, J),
J > 0. We require the following modeling restrictions on w:

1. For fixed j ∈ U , w(j, ·) has the continuous time evolution described in (6).
2. For a fixed time t, w(·, t) ∈ L1(U).
3. In the absence of external inputs, w(·, t) should tend to a constant function as t→∞.

The second regularity condition is to ensure that w can be normalized, and the last condition can
be interpreted as requiring that if there are no discrete mode allocations, no memory is held for the
choices and we tend to make a uniform choice over possible clusters j ∈ J .

We can synthesize the above conditions by imposing w to evolve according to the heat equation,
drawing inspiration from physics-informed neural networks [12]. A function u : U × R+ → R is
a solution of the heat equation if ∂

∂tu = γ ∂2

∂x2u, and any solution2 u satisfies the three conditions
listed above. Modeling w as a solution of the heat equation thus allows us to satisfy the conditions,
and furthermore gives us a compact form to express both the time evolution and how the trajectories
w(j, ·) relate to one another for pairs in J . In particular, the function form of w(·, t) over U
allows for an arbitrary number of modes j. In implementations, we will be dealing with finite
representations wn(j) of w(tn, j).

4.3.1 Sufficient statistic dynamics over continuous domain with Fourier analysis

With a continuous domain, to nonetheless maintain a finite representation w̃ of w for implementation
purposes, we consider the truncated Fourier series

w̃(x, t) =

N∑
k=−N

ak(t) · eikx/J

with coefficients ak(t) = 1
2πJ

∫
U
w(x, t)e−ikx/Jdx. We denote w̃(·, tn) =: wn.

Finally, we consider un-normalized Gaussian input drives g(x;µ, σ,A) = Ae−
1
2 (

x−µ
σ )

2

. The idea
would be that at time n, a bump centered around µ = zn would be added to the influence profile
w(·, tn). See Figure 1 for a visualization. A fixed variance σ2 embodies how one choice of zn
affects the “nearby” dynamical modes. A is further introduced to capture the strength of the drive;
we usually take A = 1. Its Fourier transform is known

F {g(· ;µ, σ)} (λ) = σe−iµλ

√
2π

e−
1
2 (λσ)

2

=
σe−iµλ

√
2π

g(λ;σ−1) =: G(λ;σ, µ) (8)

We state the dynamics of the coefficients ak of wn under these inputs.
Proposition 4.1. Let w be a solution of the heat equation on U ⊂ R with point drives g(·; zn, σ) ∈
L1(U) at time tn. The dynamics of the truncated Fourier series wn of w(·, tn) have coefficients

ak(tn+1) =
(
ak(tn) + J−1G(k/J ;σ, zn)

)
e−γ k2

J2 (tn+1−tn)

for tn ∈ {0, . . . , T − 1}, with ak(t0) = G( kJ ;σ, z0).

Proof. From the definition of the Fourier transform ŵ of w, it follows that ak(t) = 1
J ŵ( kJ , t). For

w a solution of the heat equation, its Fourier transform satisfies

ŵ(λ, tn+1) = ŵ(λ, tn)e
−γλ2(tn+1−tn)

where in our case the previous state ω̂(λ, tn) in Fourier domain satisfies

ŵ(λ, tn) =
1

2π

∫
U

(
lim
t↑tn

w(x, t) + g(x; zn, σ)

)
eiλxdx = lim

t↑tn
ŵ(λ, t) + ˆg(·; zn, σ)(λ)

2We consider initial conditions w(·, 0) ≡ 0 and Dirichlet boundary conditions w(x, ·) = 0 on x ∈ ∂U .
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such that

ŵ(λ, tn+1) =

(
lim
t↑tn

ŵ(λ, tn) +G(λ;σ, zn)

)
e−γλ2(tn+1−tn)

with initial condition w(λ, 0) ≡ 0 and w(λ, t0) = 1
2π e

iλz0 . Combining it all, we get that the
coefficients of the truncated Fourier expansion follow

ak(tn+1) =
1

J
ŵ (k/J, tn+1) =

(
ak(tn) +

1

J
G

(
k

J
;σ, zn

))
e−γ k2

J2 (tn+1−tn)

as desired.

Alternate influence dynamics and associated Fourier coefficients

Instead of Gaussian bumps g, we can consider delta δzn inputs. This yields
Proposition 4.2. Let w be a solution of the heat equation on U ⊂ R with point drives δzn ∈ L1(U)
at time tn. The dynamics of the truncated Fourier series wn of w(·, tn) have coefficients

ak(tn+1) =

(
ak(tn) +

1

J
ˆδzn(k/J)

)
e−γ k2

J2 (tn+1−tn)

for tn ∈ {0, . . . , T − 1}, with ak(t0) = ˆδz0(
k
J ).

Proof. From the definition of the Fourier transform ŵ of w, it follows that ak(t) = 1
J ŵ( kJ , t). For

w a solution of the heat equation, its Fourier transform satisfies

ŵ(λ, tn+1) = ω̂(λ, tn)e
−γλ2(tn+1−tn)

where in our case the previous state ω̂(λ, tn) in Fourier domain satisfies

ω̂(λ, tn) =
1

2π

∫
U

(w(x, tn) + δzn(x)) e
iλxdx = ŵ(λ, tn) +

1

2π

∫
U

δzn(x)e
iλxdx

= ŵ(λ, tn) +
1

2π
eiλzn

such that

ŵ(λ, tn+1) =

(
ŵ(λ, tn) +

1

2π
eiλzn

)
e−γλ2(tn+1−tn)

with initial condition w(λ, 0) ≡ 0 and w(λ, t0) = 1
2π e

iλz0 . Combining it all, we get that the
coefficients of the truncated Fourier expansion follow

ak(tn+1) =
1

J
ŵ (k/J, tn+1) =

1

J

(
ŵ(k/J, tn) +

1

2π
ei

k
J zn

)
e−γk2(tn+1−tn)/U

2

=

(
ak(tn) +

1

2πJ
ei

k
J zn

)
e−γ k2

J2 (tn+1−tn)

as desired.

4.4 Further results on the NASCAR experiment
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Figure 5: Sample continuous dynamics xt for each seed for each model. Models were trained for
100 iterations, with K = 4 dynamical modes zn.
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