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Introduction

Motivation: Recent works in Bayesian deep learning note a counter-intuitive
phenomenon—that larger architectures (specifically larger width) can hurt model per-
formance [2, 1]. Despite better performance of smaller NNs, posterior inference in
finite-width BNNs is hard whereas, in the infinite-width limit, BNNs converge to a well-
behaved model, the Neural Network Gaussian Processes (NNGPs), that admit easy
theoretical analysis.

Goal: To provide empirical explanations for the counter-intuitive phenomenon, by com-
paring the inductive biases and frequency spectra of finite- and infinite-width BNNs.

Contributions: Under certain model misspecifications, compared to infinite-width BNNs,
we find that finite-width BNNs:

1. Can generalize better;

2. Can generate more diverse datasets;

3. Define coefficient distributions over the frequency spectrum that are heavier-tailed
before inference and more similar to the data after inference;

4. Are better at adapting to model mismatch using different frequency components;

Background

We consider single hidden-layer neural networks of width H:

fNN(xi) =
1√
H
w1ϕ(w0xi + b0) + b1.

• Bayesian neural networks (BNNs) place a prior over neural network weights, which
implies a prior pBNN(f ) over neural network functions.

• Gaussian processes (GPs) place a prior pGP(f ) directly over functions.

As the width tends to infinity, pBNN(f ) → pNNGP(f ).

We consider BNNs with erf and ReLU nonlinearity, whose infinite-width counterparts are
referred to as limiting NNGPs with Arcsin and Arccos kernels, respectively.

Generalization Performance
of Finite- and Infinite-Width BNNs

Can finite-width BNNs outperform infinite-width BNNs?
We draw datasets from a GP that is different from the limiting NNGP and then compute
the average difference in two metrics:

∆NLLBNNH
=

1

S

S∑
s=1

[NLLBNNH
(D(s))− NLLNNGP(D(s))] (1)

∆MSEBNNH
=

1

S

S∑
s=1

[MSEBNNH
(D(s))− MSENNGP(D(s))] (2)

Fig. 1: Test performance of finite-width BNNs: D ∼GP-RBF(l = 0.5); BNN with erf, σ2
W = σ2

b = 2.0

Results: When there is a model mismatch between the data generating model and
the limiting NNGP, finite-width BNNs can outperform NNGPs

Quantitatively Comparing Inductive Biases
Using the Data Likelihood

Do finite-width BNNs outperform infinite-width BNNs due to their inductive biases (overlap
between assumptions of model class and those of the data generating process)?

Commonly, literature uses the Log Marginal Likelihood (LML) that answers “how likely is
the dataset to be generated under the model?”. Unfortunately, the LML is computationally
difficult to estimate for BNNs.

We quantify the overlap by asking that “how likely is the data to be generated by the model
under the data generating process?” For datasets sampled from BNNs or limiting NNGPs,
we evaluate their LML under the data generative GP, which is easy to compute. We call
this the Log Data Likelihood (LDL) to avoid confusion:

LDL = −1

2
(y −m(x))⊺Σ−1

f (y −m(x))− 1

2
log |Σf | −

n

2
log 2π where Σf = K + σ2ϵI

Fig. 2: CDF of LDL with datasets sampled from BNNs or limiting NNGPs and evaluated under GP-RBF(l = 0.5).

Results: Finite- and infinite-width BNNs have distinct inductive biases. BNNs with
larger widths generate less diverse datasets since the cdf of wider BNNs is higher in high
LDL region (i.e. they generate limited datasets with high LDL).

Qualitatively Comparing Inductive Biases
in Function Space

Do finite-BNNs outperform infinite-width BNNs due to their spectral properties?

Discrete cosine transform (DCT) Given a function f⊺ = [f0, . . . , fN−1]
⊺, DCT is a linear

and invertible function, TDCT, that expresses a function as a weighted sum of cosines of
different frequencies:

a = TDCTf , where TDCTij =

√
2√

2I[i=0]N
cos

(
πi(2j + 1)

2N

)
(3)

where a ∈ RN are the DCT coefficients that define the weights on cosines of different
frequencies—i.e., a0 is the weight on the lowest frequency and aN−1, the highest.

Fig. 3: The distribution of DCT coefficients a under the prior predictive distribution: solid line—f ∼ pBNN(f );

dashed line—f ∼ pNNGP (f ).

Results: finite-width BNNs define a spectrum with more mass on large coefficient
values across different frequencies

Low-pass filtering. Given a function f , we first compute its DCT coefficients a, and reconstruct
that function via f = T⊤

DCTa. We then remove high-frequency components from the function by
setting the corresponding DCT coefficients to 0. More removed frequencies implies smoother draws
from the functional prior.

Low-pass filtered BNNs. We filter out high frequencies from the model (“LPF-BNN”) by setting
ai = 0 for i > tN and training on data from a GP that is not the limiting NNGP (GP-RBF(l = 0.5)).

Fig. 4: Left: function draws from LPF-BNNs; Right: test performance of LPF-BNNs.

Results: Removing high-frequency components hurts the generalization performance of
finite- width BNNs.

Low-pass filtered datasets. We filter out high frequencies from the data and examine the
distribution of the DCT coefficients under the posterior.

Fig. 5: Test performance of finite-width BNNs on low-pass filtered datasets.

Results: Finite-width BNNs are better at adapting to the designed model mismatch. For finite-
width BNNs, the distributions of DCT coefficients corresponding to the high-frequency components
put more mass around 0, which resembles the true data generating process (ai = 0 for i > tN ).

Future Work

• The optimal width given different dataset size.

• Non-Gaussian models (e.g., finite-width BNNs, student’s-T processes) or non-Gaussian ap-
proximation of the true posterior.
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