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TL;DR
•
• We point out three catastrophic failure modes of EP-
MCMC;
• We propose a solution to these failures using Gaussian
process surrogates

An alternative construction for RBF kernelsTL;DR

• In this work, we propose a new  non-stationary 
GP model, focusing on greater interpretability;

• Our model models the lengthscales of the non-
stationary kernel as a field of locally linear 
transformations;

• We compare this model with the traditional 
compositional deep GP in synthetic and popular 
regression datasets and obtain promising results.

A kernel is stationary if: 

From stationary kernels to non-stationarity

𝑘 𝑎, 𝑏 = 𝜙 𝑎 − 𝑏 𝑇Δ−1 𝑎 − 𝑏

Monsters around the corner

1. The interpretation of Δ 𝑥 becomes unclear due to the 
presence of the orange pre-factor (Gibbs, 1997);

2. The quadratic term inside 𝜙 usually defines the distance
function of a semi-metric space, however, in the non-
stationary case, the triangle inequality can be violated
(Paciorek, 2003).

For a certain 𝜙 𝑑 :ℝ → ℝ and lengthscale matrix Δ. For 

example, the RBF kernel is the one with 𝜙 𝑑 = exp −
1

2
𝑑 .

As shown by Gibbs (1997), one can build a non-stationary
kernel from these building blocks as follows:

2𝑑
Δ(𝑎) Δ 𝑏

Δ 𝑎 + Δ(𝑏)
𝜙 2 𝑎 − 𝑏 𝑇 Δ 𝑎 + Δ 𝑏 −1 𝑎 − 𝑏

We propose using a different construction, first by rewriting 
the stationary kernel definition:

𝑘 𝑎, 𝑏 = 𝜙 𝑎 − 𝑏 𝑇Δ−1 𝑎 − 𝑏

= 𝜙 𝑎 − 𝑏 𝑇 𝑊𝑇𝑊 𝑎 − 𝑏

= 𝜙 𝑊𝑎 −𝑊𝑏 𝑇 𝑊𝑎 −𝑊𝑏

Where we split the positive-definite inverse lengthscale
matrix into a product of ordinary matrices. From this point, 
now we can make 𝑊 a function of the inputs:

𝜙 𝑊 𝑎 ⋅ 𝑎 −𝑊 𝑏 ⋅ 𝑏 𝑇 𝑊 𝑎 ⋅ 𝑎 −𝑊 𝑏 ⋅ 𝑏

This new kernel is still a positive-definite function, doesn’t 
contain the pre-factor from Gibbs and respects the triangle 
inequality.

Deep Mahalanobis GP

By placing a Gaussian process prior on the entries of 𝑊, we 
get a deep model that maintains each GP layer still grounded 
on the input data.

Results
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