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Abstract

We propose a class of hierarchical Gaussian process priors in which each
layer controls the kernel lengthscales of the next. While this has been
explored before, our proposal extends previous work on the Mahalanobis
distance kernel bringing an alternative construction of non-stationary RBF-
style kernels. The new approach has desirable properties that enables the
analysis of input-dependent lengthscales. More specifically, we interpret our
model as a GP that performs locally non-linear dimensionality reduction.
We directly compare it with compositional deep Gaussian process, a popular
model that uses successive latent space mappings to alleviate the burden
of choosing a kernel function. Our experiments show promising results in
both synthetic and real regression datasets.

1 Introduction

Gaussian processes (GP) priors are a non-parametric alternative to more traditional learn-
ing methods in various tasks in machine learning, however, the flexibility of this prior is
mostly determined by the kernel function used, therefore, expressive kernels with tuneable
hyperparameters are the most common choices. Deep Gaussian processes (DGP) priors [B, [l
move away from expert-designed kernels and instead learn feature spaces from data without
any feature engineering, this is done through the outputs-to-inputs composition of functions
sampled from simple GP priors. However, naive composition of GPs adds extra complica-
tions not present in, e.g., stacked neural network layers. As discussed in_the literature, this
stems from the non-injective transformations learned by each GP unit [[7, B].

Nevertheless, as described by Dunlop et al. [2], this input-output compositional setup is
not the only way to compose GPs. After all, the parameters of the GP distribution (mean
and kernel function) are function themselves. In particular, we focus on the tradition of
considering the lengthscales of stationary kernels £2 to be functions of the inputs £2(x) as
a way to make deep non-stationary GPs.

The model we propose follows the footsteps of Titsias and Lazaro-Gredilla [9] which presents
a variational inference algorithm for marginalizing the lengthscale matrix of the Mahalanobis
distance kernel, a generalization of the RBF kernel. By extending their prior to a GP prior,
we obtain a hierarchical GP model which is not susceptible to classical pathologies of DGPs,
as shown in Figure}B, can learn non-stationary behaviour and has a bias for dimensionality
reduction. We approximate the posterior using variational inference and call deep variational
Mahalanobis GP (DVMGP) the model built on this approximate posterior.
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Figure 1: Samples from zero mean priors of DGP and our proposal (DMGP). Each column
represents the number of layers of each model, with one layer being a regular GP.

2 Proposed model

Any stationary kernel k can be written as a scalar function of a quadratic form of the inputs,
in other words, k(a,b) = ¢((a — b)TA ' (a — b)) where the positive-definite matrix A is
the lengthscales matrix. If ¢(7) = oy exp[—0.57], then k is a Mahalanobis distance kernel
and, additionally, if A is diagonal, then it is usually called a RBF kernel with automatic
relevancy determination (ARD).

The idea of controlling the lengthscales of stationary kernels with a function can be seen
as desirable at first, but just changing them to be dependent on X does not always pro-
duce semi-positive-definite functions [4]. However, there is a_procedure to transforms any
stationary kernel k into a valid non-stationary kernel kns [, 6]:
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However, the input-varying lengthscales of these kernels do not inherit the usual semantics of
the lengthscales associated with the original stationary kernel, due to the extra term in the
front [4]. Worse still, the quadratic form in this kxsdoes not induce a inner product space
because the triangle inequality is violated [f], this is due to the lengthscale (A%(a) + A?(b))
depending on a and b simultaneously. Therefore, two properties that contribute to the
lengthscales’ interpretability are lost in this family of kernels.

stab

A different way to approach this problem is to rewrite the equation for the stationary kernel:
k(a,b) = ¢((a—b)TA™ (@ - b)) = ¢((a—b)TWW(a—b))
=¢((Wa —Wb)"(Wa — Wb))

At this point, we can see that the division by the lengthscales is just an arbitrary linear
transformation of the inputs applied to the stationary kernel without lengthscales. Now,
when replacing the lengthscales with a function of the inputs, there is no risk of the kernel
being invalid:

kns(a,b) = ¢(W(a)a — W(b) b)"(W(a)a — W(b)b))

Unlike the previous approach, the quadratic term still defines an inner product. Indeed, each
point’s projection only depends on that point and not on both input points, thus preserving
the triangle inequality and recovering one of the lost properties.

Titsias and Lazaro-Gredilla [9] develops a variational bayesian inference method for learning
W, the square root of the lengthscale, in the Mahalanobis distance kernel. We will refer
to this model as MGP. In an analogous manner to the development of DGP by composing
outputs of Bayesian GPLVM nodes into their inputs, we extend MGP to build a model that
places a function prior on W (x), implying that, instead of composing inputs into outputs,
this hierarchical model is built as a composition of outputs into lengthscales. Therefore,
every node of the network still has a direct dependency on the input data @, in contrast
with the compositional DGP models where only the first hidden nodes directly depend on
the input data.
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Figure 2: Graphical models for the discussed models. Dashed nodes represent the connec-
tions for composition.
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Figure 3: The mean of each model’s predicted value. Empty triangles are the pseudo-inputs
of the first layer of each model. As expected, DVMGP manages to recover the sharp divide
between both clusters. The NLPD for each model is 0.04, -0.18, and -1.88, respectively.

The two-layer deep MGP network is characterized by joint distribution:

Q,D
P W [ X) = N(s | 0,Kp) [TV (wiga | 0, K2)
q,d
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In other words, we have added GP prior to each entry of the W (N x @ x D)-tensor, with
kernels being shared for each ‘row of the matrix W;. This sharing allows the determination
of the relevancy of the latent dimensions by optimizing the kernel variance of each k(@ to

e model evidence. Our variational inference scheme follows Titsias and Lazaro-Gredilla
Eél] very closely except that we need to introduce inducing points V' on the W process and
we use a mean-field approximate posterior on q(V') = [1; , 4 N (Viga | ttiqd: iq)-

3 Experimental results

We apply the two-layer DVMGP against a two-layer double stochastic DGP [H] and the
shallow sparse GP [E on synthetic and UCI regression datasets. These models are evaluated
on average negative log predictive density and mean relative absolute error. The source code
for the model is available at https://github.com/spectraldani/DeepMahalanobisGP.

3.1 Synthetic experiment

The input of this dataset is given by two 2D clusters Cy and C; and the output is a
polynomial that only depends on the first dimension in cluster Cy but for C; only depends
on the second. Figure B displays the mean of the function that each model learned and their
NLPD. Because we know the mapping from each cluster it is feasible to see if DS-DGP and
DVMGP recover the latent transformation.

3.2 UCI datasets

Figure H shows a brief overview of the datasets and the results of 5-fold cross-validation. All
models are better or equal to the single-layer model and DVMGP holds comparable to DS-
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Figure 4: Test NLPD of each model on each of the datasets. Each dot represents the result
of a fold, and the cross is the mean of all folds.

DG-DGP(2): 2nd layer inverse lengthscale relative to largest observed value
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DVMGP: 1st layer variance relative to largest observed value

boston D=13 concrete D=8 energy D=8 wine_red D=11
0.8 0.8
0.6
0.4 4 0.64 0.64
0.4 0.4 0.4
0.2
0.2 1 0.2 0.2
0.0- 0.0 - 0.0- 0.0-
Latent dimension Latent dimension Latent dimension Latent dimension

Figure 5: A plot of the mean and 1o interval of the values that correspond to the relevance
of each latent dimension.

DGP. However, as seen in the previous section, ease to project the input space into smaller
dimensions is one of the main features of modelling behind DVMGP. Figure f displays the
set of hyperparameters that correlate with the relevance of the dimensions of the latent
space. Despite the similar performance, a sharper division between dimensions can be seen
in DVMGP’s results.

4 Discussion

We presented an alternative deep Gaussian process based on composing a GP’s output into
the lengthscales of the other’s kernel, therefore, it is not susceptible to the pathological
behaviour present in DGPs [ET his alternative builds upon a previous variational model
by Titsias and Léazaro-Gredilla [g], thus, distinguishing itself from other models based on
standard compositional functions. Moreover, the use of Monte Carlo methods for inference
enables extensions to big data datasets. Therefore, this approach can be extended to big
data datasets using scalable inference.

By evaluating the model in synthetic and empirical datasets, we see that this new model is
either comparable or better to ordinary Deep Gaussian Processes, especially in tasks that
require learning projections of the input data. It also has the advantage that the quadratic
form inside the kernel still defines an inner product space, contrasting with models based
on Paciorek [E]

However, DVMGP may suffer from some drawbacks related to optimization and expressivity.
When using the Mahalanobis kernel for dimensionality reduction, each hidden layer has
@ x D GPs, then, the number of variational parameters may become very large, which can
slow down optimization. It is also currently limited to RBF-style kernels in the output layer
and further research is required to explore alternatives under this inference methodology.
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