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Abstract

The goal of data-driven nonlinear control problems is to guarantee stability or
safety of an unknown system. We consider a method based on Control Certificate
Functions (CCFs) that uses Gaussian Process (GP) regression to learn unknown
quantities for control affine dynamics. Computing the GP estimator can become
prohibitively expensive for large datasets, which is an issue since speed is critical
in real time control systems. We introduce a random feature approximation of the
affine compound kernel to speed up training and prediction time. To ensure that
the controller can be robust to these approximations, we provide an error analysis
on the approximate mean and variance estimates. Finally, we propose a fast and
robust convex optimization based min-norm controller using the error bounds and
present preliminary experiments comparing the random features approximation to
kernel methods.

1 Introduction

It is important to guarantee properties of safety and stability in modern control applications, even
when the model of the system to be controlled is unknown and must be learned from data. Control
Certificate Functions (CCF) are utilized to build convex optimization based controllers for achieving
properties such as safety and stability [18]. CCFs have been used for attaining such properties in a
range of applications from robotics to multi-agent systems [2, 1, 14, 12, 9, 13].

Gaussian Processes (GP) are used in various settings in reinforcement learning and control when
dynamics of models are not perfectly known [10, 5, 4, 8, 11]. In particular, [6, 7] use this method
to learn models for a CCF convex optimization controller. However controller feasibility requires
dense sampling of the state space [7], and kernel methods scale poorly in number of training data.
This poses an issue in real time feedback systems. To remedy the general problem, [15] introduced
Random Fourier Features (RF) to approximate symmetric kernels with lower dimensional feature
vectors. This method can significantly improve time and memory complexity of computations. This
approach has since been further improved and analyzed in the context of kernel ridge regression
[17, 3].

We propose an RF method suitable for safety-critical control of an unknown model from data. We
adapt the RF approach to an affine dot product kernel to approximate GP regression. This allows
for efficient estimation of model dependent quantities necessary for control. We further provide a
probabilistic error analysis to propose a robust second order cone program based controller. Finally,
we validate our approach with preliminary numerical experiments comparing the accuracy and speed
of our approximation. We hope to further develop this work to compare the behavior of approximate
closed-loop control with the full GP based control.
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2 Background and Problem Setting

In this work, we consider the design of control laws for nonlinear control-affine systems of the form
ẋ = f(x) + g(x)u where x ∈ X ⊂ Rn is the system state and u ∈ Rm is the control input. We
assume that the functions f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz continuous and,
without loss of generality, that the origin is the equilibrium point, so f(0) = 0. Asuming that we
observe the state directly, our goal is to design a state feedback controller for such a system without
direct knowledge of f or g. In the following subsections, we detail elements of this approach.

2.1 Control Certificate Functions

To design controllers that guarantee properties like safety and stability, we use an approach based
on control certificate functions proposed by [18].
Definition 1. (Control Certificate Function-CCF) A continuously differentiable function C : Rn →
R is a Control Certificate Function (CCF) with comparison function α : R → R+ for control affine
dynamics defined by f, g if:

inf
u∈Rm

∇C(x)⊤f(x) +∇C(x)⊤g(x)u︸ ︷︷ ︸
:=Ċ(x,u)

+α(C(x)) ≤ 0 ∀ x ∈ X \ {0} . (1)

When the inequality Ċ(x, u)+α(C(x)) ≤ 0 is satisfied, desired system properties are certified. For
example, control Lyapunov functions (CLFs) and control barrier functions (CBFs) are types of CCFs
that respectively guarantee stability and safety. To synthesize controllers that ensure the inequality
is satisfied, we use it as a constraint in a min-norm quadratic program (QP):

u∗(x) = argmin
u∈Rm

∥u∥22 s.t. ∇C(x)⊤f(x) +∇C(x)⊤g(x)u+ α(C(x)) ≤ 0. (CCF-QP)

This controller is feasible at every x by definition, and it guarantees that the system satisfies desired
properties. However, to implement this QP, is it necessary to know the dynamics f and g. We
consider a setting where the model is unknown1, but that a valid CCF C and α for the true plant is
known. This is a structural assumption and it is met for feedback linearizable systems if the degree
of actuation of the true dynamics model is known [19]. For example, many robotic systems satisfy
this assumption.

2.2 Data-driven Controller with Gaussian Process Regression

We develop a data-driven control synthesis method which uses data of the form {(xi, Ċ(xi, ui))}ni=1.
We can approximately measure Ċ(x, u) using finite differencing methods on sampled trajectories
from the true system. By learning a model of Ċ(x, u) from this data, the CCF constraint can be
implemented in a data-driven manner. However, to ensure the the true system certifies the desired
property, we must account for prediction errors. Therefore, we use GP regression.

Under GP assumptions, given a set of finite measurements of features and labels of the form
{(sj , h(sj) + ϵj)}nj=1, where ϵj ∼ N (0, λ2n) is white measurement noise, and a query point s,
a posterior distribution for h(s) can be derived. This can be used as a prediction of h(s) at a query
point s, with mean and variance

µx(u) = z⊤(K + λ2nI)
−1ks, σx(u)

2 = k (s, s)− k⊤s (K + λ2nI)
−1ks (2)

where K ∈ Rn×n = [k(si, sj)]i,j∈[n] , ks = [k(s, s1); · · · ; k(s, sn)] ∈ Rn, and z ∈ Rn is the
vector containing the output measurements zj = h(sj) + ϵj .

Due to the affine structure of the dynamics function with respect to the input signal u, we make use
of a specialized kernel first introduced by [7]. Notice that

Ċ(x, u) = ∇C(x)⊤f(x) + (∇C(x)⊤g(x))u = ΦC

[
1
u

]
(3)

1Incorporating a known nominal model to this framework is straightforward [18, 7]
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where ΦC ∈ R1×(m+1). For convenience of notation, we define y := [1 u⊤]⊤, denote
s = [x⊤ y⊤]⊤, and define χ = X × {1} × Rm. This is used to construct the following kernel:

Definition 2. Define kc : χ×χ→ R given by kc(s, s′) := y⊤diag([k1(x, x
′), · · · , km+1(x, x

′)])y′

as the Affine Dot Product (ADP) compound kernel of (m+1) individual kernels ki : X × X → R.

By Theorem 6 in [16], with a probability of at least 1 − δ1, the approximation error of a GP is
bounded |µ(s) − h(s)| ≤ βσ(s) for a some β ≥ 0 depending on δ1. Applying this result to the
control setting where µ(s) := µx(u), σ(s) := σx(u) are the mean and standard deviation of the
GP prediction of Ċ at the query point (x, u), we have the following inequality, which holds with a
probability of at least 1− δ1 for ∀x∈X , [1 u⊤]⊤ ∈ Y , a bounded subset of Rm+1

Ċx(u) ≤ µx(u) + βσx(u) . (4)

As first proposed by [7], we construct a Second-Order Cone Program (SOCP) which defines a data-
driven min-norm stabilizing feedback control law u∗ : Rn → Rm:

u∗(x) = argmin
u∈Rm

∥u∥22 s.t. µx(u)+βσx(u)+α(C(x)) ≤ 0 (GP-CCF-SOCP)

2.3 Random Features Approximation

Random Fourier Features is a technique that can scale up methods for shift invariant kernels, i.e.
kernels satisfying k(x, x′) = k(x− x′), where k is a positive definite function. We consider kernels
with k(0) = 1. These hold for e.g. the popular RBF kernel. We define

ψ(x) :=

√
2

D

[
sin(ω⊤

1 x) cos(ω⊤
1 x) . . . sin(ω⊤

D/2x) cos(ω⊤
D/2x)

]⊤
(5)

where ωi
iid∼ p(ω) and p(ω) is the Fourier transform of the kernel (which by Böchner’s theorem,

is a valid density function). Thus we have that k(x − x′) = Eω[ψω(x)
⊤ψω(x

′)]. Sutherland and
Schneider [17] show that with probability 1− δ2,

sup
x∈X

|ψ(x)⊤ψ(x)− k(x)| ≤ ϵ for D ≥ 8(d+ 2αϵ)

ϵ2

[
2

1 + 2
d

log
σpl

ϵ
+ log

βd
δ

]
,

where l is the diameter of X , σ2
p = Ep∥ω∥2 and βd, αe defined in Proposition 1 of [17] is bounded

by a constant. For kernel regression, we can compute a random feature approximation in O(nD2)
time and O(nD) memory, which is computationally attractive if D < n.

3 Results on Random Features GP Control

To make practical use of the data-driven GP controller introduced above, it is necessary to compute
posterior estimates in real-time feedback systems. The time and memory complexity of the kernel
computations are thus of immediate concern. As a result, previous work has used only subsets of
available training data in an ad hoc manner [7].

Instead, we use a random features approximation to estimate the ADP compound kernel. We ap-
proximate only the state-dependent portion, defining the random feaures as:

φ(si)
⊤ =

[
y1i ψ1(xi)

⊤ . . . ym+1
i ψm+1(xi)

⊤] = (ϕ(xi)yxi
)⊤ (6)

where ϕ(x) := blkdiag[ψ1(x); ...;ψm+1(x)]. Let Φ ∈ Cn×D(m+1) be the matrix whose ith row is
φ(si)

⊤. Then using random features, the posterior mean and covariance can be approximated by

µ̂x(u) = φ(s)⊤(Φ⊤Φ+ λnI)
−1Φ⊤z and σ̂x(u) = λnφ(s)

⊤(Φ⊤Φ+ λnI)
−1φ(s).

Note that the time complexity of computing µ is O(n(m+ 1)2D2) as opposed to O(n3).

For the purposes of robustly guaranteeing the CCF condition (1), it is necessary to track how the
approximation error accumulates in our computation of the posterior. We provide an error analysis
which allows for the design of a quadratic SOCP (RF-CCF-SOCP) which is both computationally
efficient and robust.
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3.1 Error Bounds

Recall that ks is a vector containing the kernel k(si, s) for i=1, ..., n. Define U=[u1; ...;un]
⊤.

Proposition 1. Assume each i-th element of Φc (3) is a member of Hki
with bounded RKHS norm,

for i = 1, ...,m + 1. Assume the ADP compound kernel with bounded kernels ki and that we have
access to measurements z. Assume ∥ks∥ ≤

√
nκ and that λn = nλ. Let σmax be the max singular

value of U . Then with a probability of 1−(δ1 + δ2) we have:

|Ċ(s)− µ̂x(u)| ≤ βσ̂x(u) + ϵ(ν∥ux∥+ ι∥ux∥2 +∆) (7)

where ν := σmax√
nλ

(σn + 2βκ√
n
+ 2βϵ), ι =

βϵσ2
max

nλ ,∆ = β∆σ + (βκ+
√
nσn)∆µ,

∆µ = 1
λ
√
n
[1 + κσmax

n
√
nλ

+ κ√
nλ

],∆σ = 1 + ϵ+ κ√
nλ

We present the proof of this result in the appendix. This bound allow us to derive a robust and fast
data-driven controller:

u∗(x) = argmin
u∈Rm

∥u∥22 s.t. µ̂x(u) + βσ̂x(u) + ϵ(ν∥ux∥+ ι∥ux∥2 +∆) + α(C(x)) ≤ 0

(RF-CCF-SOCP)

3.2 Experiments

We present preliminary experiments of the random features approach for an adaptive cruise control
system with underlying dynamics:[

v̇
ẇ

]
=

[
−Fr(v)/m
v0 − v

]
+

[
1/m
0

]
u,

where x ∈ R2 is the system state, with v being the forward velocity of the ego car and w the distance
between the ego car and the front car, and u ∈ R is the ego car’s wheel force as control input. The
velocity of the front car v0 is assumed to be a constant 14 m/s, the mass of the ego car m is 3300kg,
and Fr(v) = 0.2+10v+0.5v2 is the rolling resistance acting on the ego car. We use these dynamics
to generate data, but do not assume they are available for control design.

We use data {(xi, ui)}ni=1 with n = 1160 collected episodically from this system at a sampling
frequency of 0.02 under a combined CBF and CLF controller, further detailed in [7]. We set up
a supervised learning problem for C(x) = w − Thv. We compute C(xi) and use forward finite
differencing on this sequence to estimate zi ≈ Ċ(xi, ui).

Using this dataset, we investigate the performance of the random features approximation for a GP
with RBF kernel and parameters σn = 1, D = 700, β = 1. Both GP and RF regression are imple-
mented in numpy. The training time takes 0.420 seconds for the ADP kernel and 0.065 seconds for
its RF approximation. This is a reduction of 85%. Figure 1 plots a subset of this data (from the final
episode) and compares the mean and and variance of the predictions. We see that the RF predictions
are nearly identical, although sometimes it underestimates the variance compared with the full ADP
kernel. This observation highlights the importance of incorporating the error analysis presented in
the previous section.

Figure 1: Predicted mean (dot) and variance (bars) for Ċ in the final episode of training data.
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A Proof of Approximation Error Bounds

Define the random features approximation as k̂s := Φφ(s) = Φϕ(x)y.

Proof. we split the proof to several steps:

1. Approximating the compound kernel:

|k(s, s′)− k̂(s, s′)| = y⊤diag[k1(s, s
′)...km+1(s, s

′)]y′ − y⊤diag[k̂1(s, s
′)...k̂m+1(s, s

′)]y′

≤ ϵ(u⊤u′ + 1)

which implies:

∥K − K̂∥2 ≤ ϵ∥[u⊤i uj + 1]i,j∥2 ≤ ϵσ2
max + ϵn

∥ks − k̂s∥ ≤ ϵ∥[u⊤x ui + 1]i∥ ≤ ϵ∥ux∥.∥[u1, ..., uN ]∥+ ϵ
√
n ≤ ϵσmax∥ux∥+ ϵ

√
n

2. Approximating the mean:

|µx(u)− µ̂x(u)| = ∥z⊤∥∥(K̂ + λnI)
−1(ks − k̂s) + ((K + λnI)

−1 − (K̂ + λnI)
−1)ks∥

≤ ∥z∥
λn

∥k̂s − ks∥+
∥z∥.∥K̂ −K∥

λ2n
∥ks∥

≤
√
nσn
nλ

∥k̂s − ks∥+
√
nσnκ

n2λ2
∥K̂ −K∥

≤
√
nσn
nλ

(ϵσmax∥ux∥+ ϵ
√
n) +

√
nσnκ

n2λ2
(ϵσ2

max + ϵn)

≤ ϵ∥ux∥
σmaxσn√

nλ
+

√
nσn∆µ

Where we used (K+λI)−1−(K̂+λI)−1 = (K̂+λI)−1(K̂−K)(K+λI)−1, and that the
smallest eigenvalue of K̂ + λI and K + λI is at least λ

3. Approximating the variance: Assume σx(u)+σ̂x≤ 1

|σx(u)− σ̂x(u)| ≤ |σx(u)2 − σ̂x(u)
2|

≤ ϵ+ |ks[(K + λ)−1k⊤s − (K̂ + λ)−1k̂⊤s ] + [ks − k̂s](K̂ + λ)−1k̂⊤s |

≤ ϵ+ ∥ks∥
|µx(u)− µ̂x|

∥z∥
+
ϵσmax∥ux∥+ ϵ

√
n

nλ
∥k̂s∥

≤ ϵ+ κ(ϵ∥ux∥
σ2
max

nλ
+∆µ) +

ϵσmax∥ux∥+ ϵ
√
n

nλ
(κ+ ϵσ2

max∥ux∥+ ϵ
√
n)

≤ ∥ux∥
2ϵσ2

max√
nλ

(
κ√
n
+ ϵ) + ∥ux∥2

ϵ2σ2
max

nλ
+∆σ + κ∆µ
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4. Bounds on total error: with a probability of 1−(δ1+δ2):

|Ċx(u)− µ̂x(u)| ≤ |µx(u)− Ċx(u)|+ |µx(u)− µ̂x(u)|
≤ βσ̂x(u) + β|σx(u)− σ̂x(u)|+ |µx(u)− µ̂x(u)|
≤ βσ̂x(u) + ∥ux∥ν + ∥ux∥2ι+∆s
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