
Problem setup
● Goal: minimise uncertainty over a complicated, non-stationary 
spatiotemporal function,       , by proposing new sensor locations

● Ground truth        = simulated Antarctic surface air temperature

● ConvGNP1,2: Learns a map from context data  
and target inputs      to a Gaussian over target outputs

● Training: Minimise negative log-likelihood (NLL) using randomly 
sampled              and              over 1980-2013
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Environmental Sensor Placement with
Convolutional Gaussian Neural Processes

Conclusions
● Vanilla GPs place strong restrictions on the form of the 
covariance function,             → poor performance on non-
stationary environmental data

● ConvGNP leverages obs over multiple time steps    to meta-
learn arbitrary non-stationary covariance structure 

● Active learning using ConvGNP’s mutual information can 
rapidly increase the likelihood of ground truth 
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Summary
● Problem: Sensor placement with non-stationary spatiotemporal data.
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ConvGNP learns non-stationary covariance structure

Sensor placement toy experiment

● ConvGNP meta-learns spatial covariance.
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● Enables multiple predictors
● Handles missing data

● Data-driven
● Flexible

● Lowrank covariance matrix 
→ efficient,

Number of placed sensors

● ConvGNP outperforms Gaussian processes (GPs) with a non-
stationary kernel (Gibbs) and a stationary kernel (EQ) on test 
data (2018-2019):

● Enables non-
stationarity

● Active learning with mutual information identifies highly informative placements.
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● Outputs a GP 
predictive at

ConvGNP temperature samples over Antarctica

● Obs of target variable

ConvGNP: A meta-learned mapping from raw data to a
GP predictive

Optimally reduces RMSE Optimally reduces entropy Most uncertain location
● Greedily place sensors4 and compute likelihood of true
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