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Abstract

Deploying environmental measurement stations can be a costly and time-
consuming procedure, especially in remote regions that are difficult to access, such
as Antarctica. Therefore, it is crucial that sensors are placed as efficiently as pos-
sible, maximising the informativeness of their measurements. This can be tackled
by fitting a probabilistic model to existing data and identifying placements that
would maximally reduce the model’s uncertainty. The models most widely used
for this purpose are Gaussian processes (GPs; Williams and Rasmussen, 2006).
However, designing a GP covariance which captures the complex behaviour of
non-stationary spatiotemporal data is a difficult task. Further, the computational
cost of GPs makes them challenging to scale to large environmental datasets. In
this work, we explore using a convolutional Gaussian neural process (ConvGNP;
Bruinsma et al., 2021; Markou et al., 2022) to address these issues. A ConvGNP is
a meta-learning model that uses neural networks to parameterise a GP predictive.
Our model is data-driven, flexible, efficient, and permits multiple input predic-
tors of gridded or scattered modalities. Using simulated surface air temperature
fields over Antarctica as ground truth, we show that a ConvGNP significantly out-
performs a non-stationary GP baseline in terms of predictive performance. We
then use the ConvGNP in an Antarctic sensor placement toy experiment, yielding
promising results.

1 Introduction

The problem of sensor placement can be posed as follows: given an initial set of observations of
some system, where should the next K observations be taken? In environmental sciences, the goal
is to better understand and predict a variable across time and space. Machine learning methods
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can be used to tackle this problem in a data-driven fashion using techniques from active learning. In
active learning, the first step is to fit a probabilistic model to noisy observations of an unknown func-
tion f(x), specifying a predictive distribution over possible functions, and identify new observation
locations that are informative for the model.

The above task is extremely challenging with complex spatiotemporal variables. For instance, at-
mospheric surface temperature will be highly non-stationary in space (e.g. a mountainous region
versus a plain) and time (e.g. summer versus winter). Furthermore, temperature depends heavily on
other predictor variables, which may be observed at point-based locations (such as winds) or on a
dense grid, such as surface elevation and sea ice coverage.

GPs are the go-to models for sensor placement and the related task of Bayesian optimisation1 in
the large majority of cases (Krause et al., 2008; Shahriari et al., 2016) due to their flexibility, ease
of implementation, and closed-form posteriors. However, with dynamic environmental data, it is
difficult to specify GP mean and covariance functions that faithfully capture the complex behaviour
of the data. Furthermore, vanilla GPs cannot leverage other predictor variables (such as satellite
data), which may be crucial for the prediction task.

In this work, using simulated daily-average Antarctic surface temperature as a motivating example,
we demonstrate the ability to address the above problems using a convolutional Gaussian neural
process (ConvGNP; Markou et al., 2022), a model which has recently shown significant promise in
modelling environmental data (Vaughan et al., 2021; Markou et al., 2022).

1.1 Problem setup and meta-learning

Suppose the data lies on a regular time grid, indexed by τ . For each τ , we can consider each time
slice to contain (1) a context set (x(c),y(c)) where x(c) are the input observation locations and y(c) are
the output observations, and (2) a target set (x(t),y(t)). The context and target sets are aggregated
into a task Dτ = (x(c)

τ ,y(c)
τ ,x(t)

τ ,y
(t)
τ ). The goal is to build a model that takes the context set as input

and makes probabilistic predictions for the target outputs y(t)
τ given the target inputs.

1.2 ConvGNP model

Neural processes (NPs; Garnelo et al., 2018a,b) are a recent class of meta-learning models which
aim to combine the modelling flexibility of neural networks with the prediction uncertainties of
Gaussian processes. An NP can be framed as a prediction map π (Foong et al., 2020), which is a
function that directly maps from the context set to a predictive distribution over the corresponding
target outputs y(t). The ConvGNP is a particular NP variant that outputs a GP predictive:

π(y(t);x(c),y(c),x(t)) = N (y(t);m,K), (1)

where r, a CNN, produces an encoding of the context set with r = r(x(c),y(c)), and multi-
layer perceptrons f, g parameterise the mean and covariance with m = f(x(t), r) and Kij =

g(x(t)
i , r)

Tg(x(t)
j , r). This formulation allows training the ConvGNP with a simple maximum like-

lihood procedure, learning to output arbitrary mean and covariance functions with a single forward
pass, rather than explicitly specifying a prior over the data (as with vanilla GPs). Further, designing
the covariance to be explicitly low-rank enables fast predictions, with a cost that is linear in the num-
ber of target points. This out-of-the-box scalability allows the model to run over tens of thousands of
target points, permitting the placement algorithm to scale to vast regions such as Antarctica. We refer
the reader to Appendix B for further model details, including an architecture schematic (Fig. B1).

1.3 The dataset

We use a reanalysis of daily-averaged atmospheric surface temperature over Antarctica as ground
truth. Reanalysis data are produced by fitting a climate model simulation to observations (Get-
telman et al., 2022), which capture the complex spatiotemporal dynamics of the Earth system on
a regular grid. We further provide the ConvGNP with another context set of gridded elevation,
a land mask, and space/time coordinate variables to enable learning non-stationarities (Appendix
B.4). Real Antarctic station locations are used for the sensor placement experiment and generation
of Figure 1. For details on the data sources and processing stages see Appendix A.

1Bayesian optimisation differs slightly from sensor placement in that the task is to optimise a black-box
function f rather than reduce uncertainty about f .
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2 Results

In this section we perform two experiments. First, we compare the ConvGNP with a stationary
and non-stationary GP benchmark on a temperature regression dataset. Second, we perform sensor
placement with a range of placement criteria, analysing the placement quality against the ERA5
ground truth data.
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Figure 1: a, ERA5 temperature on τ = 2018/6/25; b-e, ConvGNP samples. Crosses denote x(c)
τ .

2.1 Performance on unseen data

Figure 1 compares ground truth ERA5 temperature with ConvGNP samples after running the model
with (x(c)

τ ,y(c)
τ ) interpolated at real Antarctic temperature station locations at time τ for an unseen

test date. The samples closely interpolate the context observations at station locations. Away from
the stations, over remote and sparsely monitored regions, they display significant variation with
interesting non-stationary spatial correlation structure.

ConvGNP performance metrics are reported in Table 1. We use two vanilla GP benchmarks: one
with a non-stationary Gibbs kernel where the length scale varies over input space (Fig. C1), and one
with a stationary exponentiated quadratic (EQ) kernel (Appendix C). The ConvGNP significantly
outperforms both GP benchmarks in terms of negative log likelihood (NLL) and mean absolute
error (MAE). See Appendix D for discussion on the differences between these three models.

Table 1: Test results on the temperature regression task on unseen data from the period 2018–2019.
Errors indicate standard errors. Significantly best results in bold.

METRIC CONVGNP GIBBS GP EQ GP

NORMALISED NLL −1.76±0.03 −1.15±0.04 −0.72±0.01

MAE (◦C) 0.93±0.03 1.34±0.04 2.10±0.06

2.2 Sensor placement toy experiment

Following previous works (Krause et al., 2008), we pose sensor placement as a discrete optimisation
problem using a greedy algorithm with a placement criterion to propose sensor placements one at
a time. We choose K = 10 sensor placements x∗ out of a set of S = 863 possible placement
locations x(s) on a regular grid over Antarctica. For each placement criterion, we compute the
acquisition function at each time index τ and discrete query location x(s)

i , returning a ranking score.
The final ranking score at x(s)

i is the mean over time:

αavg(x
(s)
i ) =

1

T

T∑
τ=1

α(x(s)
i , τ). (2)

In a greedy iteration, we compute αavg(x
(s)
i ) for i = (1, . . . , S) and select the i∗ corresponding

to the maximum ranking score. We then append the corresponding input x(s)
i∗ to the context set

x(c)
τ → {x(c)

τ , x(s)
i∗} and reveal ground truth to the model with y(c)

τ → {y(c)
τ , ŷ(s)

τ,i∗}. This process is
repeated until K placements have been made. See Appendix E for further experiment details.

2.2.1 Acquisition functions

Here we describe the acquisition functions used for each placement criterion. Mathematical defini-
tions are provided in Appendix E.3.

OracleRMSE: decrease in RMSE after conditioning the model on the ground truth observation,
ŷ(s)
τ,i at x(s)

τ,i, using the mean of the predictive distribution as the model’s point-based estimate.
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MaxMI: mutual information (MI) between y(t)
τ and a query sensor observation (x(s)

i , ȳ(s)
τ,i), where

ȳ(s)
τ,i is the model’s mean prediction at x(s)

i for time τ . The MI has been used frequently in past
work to identify locations that maximally reduce the model’s predictive uncertainty (Lindley, 1956;
MacKay, 1992; Krause et al., 2008; Schmidt et al., 2019).

MaxStddev: marginal standard deviation of the predictive distribution at query location x(s)
i .

MaxDist: distance to the closest sensor. This is a simple heuristic which proposes placements as
far away from the observed data as possible.

Random: uniform white noise function (equivalent to placing sensors randomly). The performance
of this criterion reflects the average benefit of adding new observations to the model.

2.2.2 Toy experiment results

We find that the MaxMI criterion proposes very similar sensor placements to OracleRMSE (Fig.
2f,g, Fig. E1), despite not having access to ground truth (see Appendix E.4 for a detailed compar-
ison of the placements from MaxMI and OracleRMSE). Furthermore, the initial k = 1 greedy
iteration αavg(x

(s)
i ) field of MaxMI shows similar structure to OracleRMSE, with three clear modes

of ranking score in similar locations (Fig. 2a,b). This is not picked up by the simpler MaxStddev
criterion that does not leverage output dependencies in the predictive (Fig. 2c).
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Figure 2: a-e, Maps of acquisition function values αavg(x
(s)
i ) for the first greedy iteration. f-j, Sensor

placements indicated with green integers for the greedy iteration they were chosen. Black crosses
denote the initial x(c)

τ (shown for τ = 2018/1/1).

Figure 3 shows the quality of the placements based on the model’s ability to predict simulated
temperature over Antarctica as observations are added at the proposed locations. The difference in
RMSE is small between MaxMI and the simpler MaxStddev and MaxDist criteria by k = 10.
However, the MaxMI criterion increases the normalised joint log density of held-out points the
fastest (even faster than OracleRMSE, which doesn’t optimise for the log density). This shows that
MaxMI identifies highly informative locations for improving the model’s probabilistic predictions.
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Figure 3: Sensor placement results averaged over 2019 data. a, RMSE. b, log likelihood normalised
by the number of targets. The Random error bar shows the standard deviation over 10 random seeds.
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3 Discussion

Using simulated Antarctic surface temperature data, we have shown that ConvGNPs have a range
of properties that enable modelling complex spatiotemporal climate variables. These properties in-
clude: ability to learn arbitrary covariance and mean functions from raw data; meta-learning across
multiple time steps; ingestion of multiple predictors of various modalities (gridded and off-grid);
and out-of-the-box scalability. Notably, the ConvGNP makes significantly better probabilistic pre-
dictions than a non-stationary GP benchmark on unseen test data. In a sensor placement toy exper-
iment using the simulated temperature fields, we show that these modelling benefits enable highly
informative sensor placements by leveraging a mutual information placement criterion.

The results of our toy experiments are promising but preliminary: here the ConvGNP was trained on
a large dataset with observations across the entire input space, but real observations may be sparse
and constrained to finite locations. Future work will test modelling scenarios that leverage both
observational data and simulated data. We will explore the fusion of in-situ station observations
with satellite data to fill missing gaps in station coverage and assess uncertainty quantification in
this setting.

By leveraging modelling advances that can better tackle the complexities of environmental data,
our work goes beyond the traditional GP-based geostatistics Kriging approach (Cressie, 1993) and
brings us closer to answering the demands of modern model-data fusion methods (Gettelman et al.,
2022) and digital twins of the natural environment (Blair, 2021).

Data and Code

Code to reproduce the results in this paper will be released in the near future.
The ConvGNP was implemented using the Python package neuralprocesses, available at
https://github.com/wesselb/neuralprocesses.
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Appendix

A Data considerations

In this section we describe details behind the data sources, preprocessing, and normalisation.

A.1 Data sources

The daily-averaged temperature reanalysis data was obtained from ERA5 (Hersbach et al., 2020).
The land mask and elevation field was obtained from the BedMachine dataset (Morlighem, 2020).
The Antarctic temperature observations from crewed and automatic weather stations were down-
loaded from ftp.bas.ac.uk/src/.

A.2 Data preprocessing

The temperature data and land/elevation auxiliary data were regridded from lat/lon to a Southern
Hemisphere Equal Area Scalable Earth 2 (EASE2) grid at 25 km resolution and cropping to a size
of 280 × 280. This centres the data on the South Pole.

A.3 Data normalisation

To aid the training process, we normalised the data before passing it to the ConvGNP and GP models.
The temperature data was normalised from Celsius to a mean of 0 and standard deviation of 1.
The elevation field was normalised from metres to values in [0, 1]. The land mask already took
appropriate normalised values in {0, 1}. The input coordinates x were normalised from metres to
take values in [−1, 1].

B ConvGNP

Here we provide details on the ConvGNP training procedure and architecture. A high-level
schematic of the ConvGNP forward-pass is shown in Figure B1. We refer the reader to (Markou
et al., 2021) for further model details.

Context set 1:
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Context set 2:
ERA5 temperature
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Figure B1: Schematic depicting the ConvGNP forward pass. As input, the model receives two con-
text sets: 6 gridded auxiliary fields, and temperature observations. These context sets are converted
to a functional representation (with a density channel for each context set indicating where data is
observed), followed by a 2D discretisation procedure (Gordon et al., 2020). A CNN takes these
channels as input and outputs a gridded representation, r, which is interpolated at target points x(t)

and used to parameterise the mean and covariance of the multivariate Gaussian distribution over
y(t). The output mean vector µ and covariance matrix K are shown after running the model with a
vertical line of target points (overlaid on context set 2).

B.1 Generation of Dτ for the training, validation, and test datasets

Each daily-average training dataset Dτ was generated by first drawing the integer number of simu-
lated temperature context points Nc ∼ Unif{1, 2, . . . 500}. Allowing for randomness in Nc encour-
ages the model to learn to deal with both data-sparse and data-rich scenarios. We held the number
of target points Nt fixed at a fairly high value of 2,000 to provide sufficient signal for learning the
covariance structure of the data while not incurring the cost of a very large Nt.
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Next, the input locations x(c)
τ and x(t)

τ were sampled uniformly at random across the entire 280 ×
280 input space.

For the training dates, the random seed used for generating Dτ is changed every epoch, allowing for
an infinitely growing simulated training dataset. In contrast, for the validation and test dates, fixed
random seeds are used so that the Dτ are deterministically random. This ensures the validation and
test metrics are deterministic during and after training.

For the test results shown in Table 1, we increase the lower bound on Nc from 1 to 50 to allow the
GP benchmarks more context data for deviating from their constant prior mean behaviour.

B.2 Antarctic surface temperature ConvGNP training procedure

The model was trained on data from 1980-2013. An Adam optimiser was used with a learning rate
of 5 × 10−5 and a negative log likelihood loss function. Gradients with respect to the loss were
averaged over batches of two datasets.

Validation data from 2014-2017 was used for checkpointing the model weights using the normalised
loss (i.e. loss normalised by number of target points). 2018-2019 data was reserved for the test set.

B.3 ConvGNP architecture

For the ConvGNP model we use the same architecture as described in Markou et al. (2021), except
for a few modifications. The UNet component of the encoder uses 5x5 convolutional kernels with
the following sequence of channel numbers (d.s. = 2x2 downsample layer, u.s. = 2x2 upsample
layer): 16

d.s.−−→ 32
d.s.−−→ 64

d.s.−−→ 128
u.s.−−→ 64

u.s.−−→ 32
u.s.−−→ 16. We use 128 basis functions for the

covariance parameterisation g. In total, the ConvGNP has 620,853 learnable parameters. We use
bilinear resize operators for the upsampling layers to fix checkerboard artifacts that we encountered
when using standard zero-padding upsampling Odena et al. (2016). For the internal discretisation
density of the model, we used 200 points-per-unit (i.e., a 1x1 square of input space contains 200x200
internal discretisation points).

The above choices for the UNet filter size and internal discretisation density results in a receptive
field of almost 790 km. In other words, context observations can influence target predictions in the
Gaussian predictive distribution up to 395 km in either direction of the x1- or x2-dimensions.

B.4 ConvGNP input data

The ConvGNP receives two context sets as input. The first contains observations of the simulated
ERA5 daily-average temperature. The second contains a set of 6 gridded auxiliary and metadata
variables. These are: elevation, land mask, cos(day of year), sin(day of year), x1, and x2. The
cos(day of year) and sin(day of year) inputs, where the day of year is normalised between 0 and 2π,
together define a circular variable that rotates once per year. This informs the model at what time of
year Dτ corresponds to, helping with learning seasonal variations in the data. The x1 and x2 gridded
fields inform the model where in input space the data corresponds to. The gridded auxiliary fields
that vary over input space are crucial for allowing the ConvGNP to model spatial non-stationarity.
This is because they break the CNN’s translation equivariance property.

C Gaussian Process benchmarks

Here we provide details on the GP benchmarks included in Table 1.

C.1 Gibbs kernel

The Gibbs kernel (Gibbs, 1997) is a non-stationary generalisation of the EQ kernel. In the x ∈ R2

case, the covariance function is given by:

k(x,x′) = σ2
2∏

i=1

(
2li(x)li(x

′)

li(x)2 + li(x′)2

)1/2

exp

(
−

2∑
i=1

(xi − x′
i)

2

li(x)2 + li(x′)2

)
, (3)

where length scale functions l1(x) and l2(x) dictate the length scales in the x1- and x2-directions.
We parameterise the length scale functions li(x) as a weighted sum of M regularly placed Gaussian
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basis functions,

li(x) =

M∑
m=1

θi,m exp

(
− (x− µm)2

2λ2

)
, (4)

where the θi,m are the constrained-positive weights of basis function m for input dimension i, and
the basis functions are placed with the µm on a 100 x 100 grid spanning the input space. The basis
function length scale λ is kept fixed and equal to the spacing between basis functions.

We train the parameters {θi, σ}, as well as the GP prior mean and noise variance, using gradient
descent on the negative log marginal likelihood (NLML) using an Adam optimiser with learning rate
1 × 10−2 and a batch size of 5. We used 1980-2013 as a training period, subsampling by a factor
of 7, amounting to 1,825 days in total, with the context and target locations generated randomly in
each epoch as described in Appendix B.1. Training was halted after the NLML did not improve for
5 epochs.

Figure C1 shows the trained length scale functions l1(x) and l2(x), revealing interesting detail such
as very low correlation length scales perpendicular to the coastline.
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Figure C1: Learned Gibbs GP length scale functions, l1(x) and l2(x).

C.2 Exponentiated quadratic kernel

We also include a much more basic GP benchmark using a non-isotropic exponentiated quadratic
(EQ) kernel, which has a stationary covariance function (unlike the Gibbs kernel).

We fit the EQ GP hyperparameters using the L-BFGS-B algorithm on random batches of 60 datasets
in 1980-2013, with convergence occurring very rapidly.

D Comparison of covariance functions

Figure D1 illustrates the differences in the covariance behaviour for the ConvGNP, the Gibbs GP
and the EQ GP, prior to conditioning on temperature observations. The ConvGNP leverages the
gridded auxiliary fields (context set 1) to learn highly non-stationary spatial dependencies in surface
temperature. For example, Figure D1a shows decorrelation over the Transantarctic Mountains, and
Figure D1a-c all show sudden decorrelation over the coastline. Furthermore, the covariance is not
constrained to be positive, unlike the GP benchmarks.

The Gibbs GP also learns non-stationary behaviour (Figure D1d-f), but the covariance function is
constrained to the form in Equation (3), restricting the kind of behaviour it can model, unlike the
ConvGNP which can learn arbitrary covariance functions.

The stationarity assumption of the EQ GP is evident in (Figure D1g-i), with the covariance behaviour
being independent of input location.
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Figure D1: Covariance function heatmaps showing k(x1,x2), with x1 fixed at the white plus lo-
cation and x2 varying over the grid. Plots are shown for three different x1-locations (the Ross Ice
Shelf, the South Pole, and East Antarctica) and the three models (ConvGNP, Gibbs GP, and EQ GP).

E Sensor placement toy experiment details

Here we provide more details on the sensor placement toy experiment.

E.1 Experiment design choices

To emulate a non-uniform sensor network to be optimised, we initialise x(c)
τ at the locations of real

Antarctic temperature station observations at time τ , and interpolate the gridded ERA5 temperature
at x(c)

τ to compute y(c)
τ .

We place K = 10 sensors using 52 uniformly spaced dates in 2018 for computing αavg(x
(s)
i ) in

Equation (2) at each query location x(s)
i . A regular spatial grid is used for the search space x(s), with

one query location every 125 km. The x(s)
i were masked out over ocean to focus on land stations.

These choices result in a search size of S = 863. The proposed placements x∗ were assessed by
analysing model performance over 121 uniformly spaced dates in 2019. Note that both the sensor
placement search and analysis periods are in the ConGNP’s test years.

For the OracleRMSE and MaxMI placement criteria, as well as for the analysis of the placements,
the target locations x(t)

τ were defined over the original 25 km ERA5 grid. Like the query placement
locations x(s), all target locations x(t)

τ were masked out over ocean to focus on predicting land surface
temperature.

E.2 Imputed y-values after each greedy placement

We reveal the ground truth observation to the model at proposed placements x(s)
i∗ after each greedy

iteration: y(c)
τ 7→ {y(c)

τ , ŷ(s)
τ,i∗}. In practice, this is not plausible for spatiotemporal data because

it would require us to go back in time to observe the function at x(s)
i∗ . An alternative approach to
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propose multiple placements using real observational data would be to approximate αavg(x
(s)
i ) by

infilling with the model mean prediction at x(s)
i∗ , e.g. y(c)

τ 7→ {y(c)
τ , ȳ(s)

τ,i∗}. Another option would
be to draw MCMC samples from the model’s distribution over y(s)

τ,i∗ . This would likely degrade the
placements to some degree. Future work will quantify the impact of placing multiple sensors at a
time.

E.3 Acquisition functions

Here we expand upon and mathematically define each acquisition function.

OracleRMSE:
α(x(s)

i , τ) = RMSE(ŷ(t)
τ ,E[y(t)

τ |x(c)
τ ,y(c)

τ ])− RMSE(ŷ(t)
τ ,E[y(t)

τ |x(c)
τ ,y(c)

τ , x(s)
τ,i, ŷ

(s)
τ,i]), (5)

where for a ConvGNP the expectation over target outputs is simply the mean parameter m output
by the model in (1).

MaxMI:
α(x(s)

i , τ) = H(y(t)
τ |x(c)

τ ,y(c)
τ )−

∫
H(y(t)

τ |x(c)
τ ,y(c)

τ , x(s)
τ,i, y

(s)
τ,i) dy

(s)
τ,i (6)

(a)≈ H(y(t)
τ |x(c)

τ ,y(c)
τ )−H(y(t)

τ |x(c)
τ ,y(c)

τ , x(s)
τ,i, ȳ

(s)
τ,i) (7)

(b)≈ cτ −H(y(t)
τ |x(c)

τ ,y(c)
τ , x(s)

τ,i, ȳ
(s)
τ,i), (8)

where cτ is a constant. In (a) we approximate the intractable expectation integral over the entropy
term H(y(t)

τ |x(c)
τ ,y(c)

τ , x(s)
τ,i, y

(s)
τ,i) with a simple substitution of the model’s mean prediction ȳ(s)

τ,i at
query location x(s)

i . In (b) we use the fact that H(y(t)
τ |x(c)

τ ,y(c)
τ ) depends only on τ and not x(s)

i .
Thus, this placement criterion is equivalent to minimising the entropy over y(t)

τ |x(c)
τ ,y(c)

τ , x(s)
τ,i, ȳ

(s)
τ,i.

Future work could improve the approximation in (a) using MCMC sampling over y(s)
τ,i. However,

this would bring a linear increase in the cost of evaluating the acquisition function.

Note, in the equation for the posterior covariance of a vanilla GP, there is only dependence on the
input coordinates x(c) and x(t), not the observed values y(c). This could be seen as an inflexible
limitation of GPs; they cannot augment the posterior entropy based on the values observed at the
x-locations. For example, if an extreme y−value is observed in the context set, a GP posterior
cannot become more uncertain or augment its correlation structure. A ConvGNP does not have this
restriction, necessitating the expectation integral in (6).

MaxStddev:
α(x(s)

i , τ) =
√

Var
(
y(s)
τ,i|x(c)

τ ,y(c)
τ

)
, (9)

where for a ConvGNP the variance over target outputs is simply the diagonal entries of the covari-
ance matrix output by the model in (1).

Note, for a given τ , the α(x(s)
i , τ) above can be computed over all x(s)

i in parallel with a single forward
pass of the model, so this criterion can be seen as a very computationally efficient benchmark that
makes no use of the dependencies between target points.

MaxDist:
α(x(s)

i , τ) = min{||x(s)
i − x(c)

τ,1||2, ..., ||x(s)
i − x(c)

τ,Nc
||2}, (10)

Random: uniform at random in [0, 1],
α(x(s)

i , τ) = uτ,i where uτ,i ∼ Unif(0, 1). (11)
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E.4 Comparison of OracleRMSE and MaxMI placements

Figure E1 shows an expanded view of the toy experiment placements from OracleRMSE and
MaxMI.

MaxMI proposes placements very close in x-space and ranking to the RMSE-optimal criterion of
OracleRMSE. The first 3 placements are strikingly similar, appearing to correspond to the three
peaks of high αavg(x

(s)
i ) in Figure 2a and 2b. After this, the placements at iteration k = 4 and

k = 5 highlight very similar regions of Antarctica but swapped between the two criteria. The
MaxMI placement at k = 6 does not correspond clearly to any placement from OracleRMSE, but
the placement at k = 7 is fairly close to OracleRMSE’s placement at k = 6. The k = 8, 9, 10
placements are then all in similar locations.

The qualitative analysis above would benefit from a quantitative comparison between sets of place-
ments with corresponding rankings. Future work will explore the use of a distance metric that
operates on pairs of (k,x) to quantify the difference between the greedy placements. Furthermore,
while the findings from this single run of the sensor placement algorithm shows the promise of the
MaxMI criterion, future work will explore the robustness of this result.
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Figure E1: Expanded view of placements from OracleRMSE and MaxMI. Initial context stations
from 2018/01/01 are shown for demonstration.
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