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1 Introduction

Modelling and forecasting time series, even with a probabilistic flavour, is a common and well-handled
problem nowadays. In particular, Gaussian processes are by essence tailored to represent continuous
phenomena, and several approaches have been proposed during the past decades to handle multiple
tasks in one model. From the seminal work of Yu et al. [2005], or the definition of coregionalisation
kernels [Goovaerts and Goovaerts, 1997, Bonilla et al., 2008], to the unifying view proposed in
the subsequent review Álvarez et al. [2012], many approaches have been explored [Fortuin et al.,
2019, van der Wilk et al., 2020], with the constraint that the number of tasks remain reasonable (the
complexity generally scales cubically with the number of tasks). However, suppose now that one
is collecting data from hundreds of individuals, each of them gathering thousands of gene-related
measurements, all evolving continuously over time. Such a context, frequently arising in biological or
medical studies, quickly leads to highly correlated datasets where dependencies come from different
sources (temporal trend, gene or individual similarities for instance). Explicit modelling of overly
large covariance matrices accounting for these underlying correlations is generally unreachable due
to theoretical and computational limitations. Therefore, practitioners often need to restrict their
analysis by working on subsets of data or making arguable assumptions (fixing time, studying genes
or individuals independently, ...). Recently, a novel paradigm for defining multi-task Gaussian
processes models has been proposed [Leroy et al., 2022] and tailored to handle multiple time series
simultaneously. In this approach, a latent mean process common to all tasks is introduced, and
knowledge is transferred through hyper-posterior computations and subsequent marginalisation. In
this paper, we aim at offering an overview of this framework, and propose a more general formulation
allowing us to handle multiple sources of correlations.

2 Sharing knowledge through a latent mean process

2.1 Modelling assumptions

Let us assume that longitudinal data are collected from M correlated tasks, over an arbitrary input
space T . To describe the generative model, we define a latent process common to all tasks, such that
output for the i-th task can be expressed as:

yi(t) = µ0(t) + fi(t) + εi(t), ∀t ∈ T ,

where:

• µ0(·) ∼ GP(m0(·),Kθ0(·, ·)) is the common mean process,
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Figure 1: Prediction curves (blue) of a new task with associated 95% credible intervals (grey) for
GP regression (left) and MAGMA (right). The dashed line represents the mean function m̂ from the
hyper-posterior. Observed points are in black and testing points in red. Colourful backward points
are the observations from the training dataset, each colour corresponding to a different tasks. Figure
from Leroy et al. [2022].

• fi(·) ∼ GP(0,Σγi(·, ·)) is the i-th task-specific process,

• εi(·) ∼ GP(0, σ2
i I) is the error term.

Under the hypothesis of independence between all pairwise elements, we remark that, conditionally
to µ0, all yi are independent and the conditional likelihood remains Gaussian:

yi(·)|µ0(·) ∼ GP(µ0(·),Σγi(·, ·) + σ2
i I).

2.2 Learning with an EM algorithm

In the model presented above, we both need to learn hyper-parameters of the kernels (as usual with
GPs) but also compute the hyper-posterior distribution of the latent mean process µ0. Although these
quantities depend on one another, we can define an Expectation-Maximisation (EM) algorithm where
the analytical derivation of the hyper-posterior of µ0 is performed alternatively with hyper-parameters
optimisation. During the E step, we can leverage the fact the hyper-posterior distribution remains
Gaussian:

p(µ0|{yi}i=1,...,M ) ∝ p(µ0)

M∏
i=1

p(yi|µ0) = N (µ0; m̂, K̂), (1)

with

• K̂ = (Kθ0
−1 +

M∑
i=1

(Σγi + σ2
i I)−1)−1,

• m̂ = K̂(Kθ0
−1m0 +

M∑
i=1

(Σγi + σ2
i I)−1yi).

Note that some of the above quantities are displayed in bold to indicate that we work on vectors for
finite-dimensional evaluations of the underlying GPs.

2.3 Post-training marginalisation

Once the EM algorithm has converged after sufficient iterations of successive E and M steps, we are
still unable to make predictions directly. The key idea of this method consists in marginalising the
latent µ0 after the training step. Assume that we aim at making predictions for an arbitrary task (the
task may have been used for training or be newly observed), indexed by ∗. It is possible to derive a
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Figure 2: Prediction curves (blue) with associated 95% credible intervals (grey) for MAGMACLUST.
The dashed lines represent the mean parameters from the mean processes estimates. Observed points
are in black and testing points in red. Backward points are observations from the training tasks,
coloured according to their most probable cluster. Figure from Leroy et al. [2020].

multi-task prior distribution for y∗, the vector of interest:

p(y∗|{yi}i=1,...,M ) =

∫
p(y∗,µ0|{yi}i=1,...,M ) dµ0

=

∫
p(y∗|µ0)p(µ0|{yi}i=1,...,M ) dµ0

= N (y∗; m̂, K̂ + Σγ∗ + σ2
∗I).

One can notice that this expression involves the parameters m̂ and K̂, which have previously been
learned thanks to the EM algorithm. Intuitively, defining this multi-task distribution allows us to
implicitly transfer knowledge by defining an already-informed prior mean, built with data from
multiple sources. To conclude the prediction step, one only needs to apply the classical formula
for conditioning over Gaussian vectors, as usual in GP regression. This overall algorithm has been
called MAGMA (standing for Multi-tAsk Gaussian processes with common MeAn). Let us display
on Figure 1 an illustration of the predictive performance of MAGMA compared to standard GP
regression. The method can take advantage of observations from other tasks to forecast a meaningful
mean trend even far from data points. Additionally, the uncertainty quantification naturally takes
into account observations both from the predicted task and the others. It is worth noticing that, by
sharing information between tasks through a mean process instead of an explicit covariance structure,
this method leads to a learning and forecasting procedure with linear complexity in the number of
tasks. Moreover, the resulting predictions remain Gaussian and thus offer an elegant probabilistic
framework to deal with correlated time series.

3 Simultaneous clustering of tasks

A valuable extension of the previous model has been proposed in Leroy et al. [2020] to perform a
simultaneous clustering of the tasks during the learning step. More specifically, this is achieved by
defining a mixture of Gaussian processes by assuming that if the i-th task belongs to the k-th cluster,
then:

yi(t) = µk(t) + fi(t) + εi(t), ∀t ∈ T .
Although additional technical details are needed to derive learning and prediction formula, the
intuition remains similar, and we display on Figure 2 the advantage of this extension (named
MAGMACLUST). We can observe that the algorithm automatically allocates the similar tasks into
clusters. Additionally, one mean process is now defined for each cluster, allowing the information
transfer to be weighted depending on the similarities between tasks. In terms of implementation, the R
package MagmaClustR, which has recently been released (https://github.com/ArthurLeroy/
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Figure 3: Prediction curves (blue) with associated 95% credible intervals (grey). The dashed lines
represent the mean parameters from the multi-mean processes estimates. Observed points are in
black and testing points in orange. Backward points are observations from the training tasks, where
individuals are differentiated with colors and genes with shapes.

MagmaClustR), offers all the tools to perform learning, prediction and plotting of results for such
models. Despite many appealing properties, this framework still presents the limitation to only
account for one source of correlation (recalling our introducing example, we could handle multiple
individuals or multiple genes but not both).

4 Multiple sources of correlation

In this work, we propose an extended framework in which as many sources of correlation as desired
can be considered. As for the precedent formulation, we can express the generative model for two
sources of correlation as:

yi,j(t) = µ0(t) + fi(t) + gj(t) + εi,j(t), ∀t ∈ T ,

where the additional process gj(·) ∼ GP(0,Σγj (·, ·)) accounts for the specific behaviour of the j-th
task of the second source of correlation. To illustrate with our previous example, we would say that
our observed time series yi,j is composed of a common mean trend, summed with a perturbation
specific to the i-th individual, and a perturbation specific to the j-th gene. Although the model
is presented here with two sources of correlations for the sake of clarity, the formulation can be
extended to an arbitrary number of additional terms. We also omitted the clustering aspect for
simplicity, though it could also be considered with no particular difficulties.

The key idea in this context comes from the definition of multiple hyper-posterior distributions for µ0

(the method is hence called multi-mean GPs) by selecting an adequate sub-sample of the training
data set. Recalling the E step in MAGMA, we can now compute M +N + 1 distinct hyper-posterior
distributions, defined as:

• p(µ0|{yi,j}i=1,...,M ), ∀j = 1, . . . , N ,

• p(µ0|{yi,j}j=1,...,N ), ∀i = 1, . . . ,M ,

• p(µ0|{yi,j}
j=1,...,N
i=1,...,M ).

The training steps in this context remains tractable and the overall EM algorithm can be parallelised
across the different hyper-posterior distributions to speed-up computations. Then, despite some
technical details, the prediction step remains roughly analogous to what we previously detailed with
MAGMA. However, multi-mean GPs leads to an adaptive predictive distribution, which uses the mean
process that is specific to the considered correlation to improve forecasting abilities. An illustration of
the multi-mean GPs model is proposed in Figure 3, where the prediction of methylation values over
time is displayed, considering multiple individuals and genes. We can notice that, for each panel (left
or right), a different mean process is used for prediction, depending on the gene that is considered.
Thanks to the learning of the different multi-mean processes, the prediction can be adapted with the
corresponding gene to provide remarkably accurate forecasts. Let us note that it remains possible to
derive analytical predictions for a completely new individual or gene (although in this case, we would
use the overall mean process, which might be less specific and thus lead to less accurate results).
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