Statistical Downscaling of Sea Surface Temperature Projections with a Multivariate Gaussian Process Model

Ayesha Ekanayaka¹, Emily L. Kang¹, Peter Kalmus², Amy Braverman² ¹Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati ²Jet Propulsion Laboratory, California Institute of Technology

- Let $Y_{t,1}(s)$ be the MUR observational SST at location s on month t and $Y_{t,2}(s)$ be the deterministically downscaled SST from the standard SD method.
- We assume the bi-variate process, $Y_t(s) = (Y_{t,1}(s), Y_{t,2}(s))'$ follow,

$$Y_t(s) = \mu_t(s) + \nu_t(s)$$

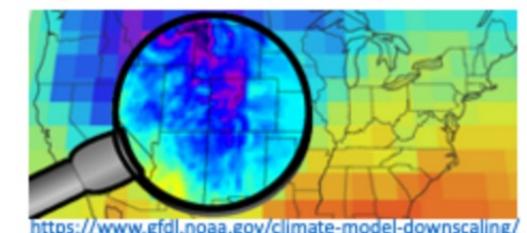
• $\mu_t(s)$ is the mean component to describe variation with spatio-temporal interaction and $v_t(s)$ is a multivariate Gaussian process to capture small-scale spatial variations. We assume,

$$v_{t,i}(s) = \sum_{k=1}^{K} \xi_i^k U^k(s) + \sum_{l=1}^{L} \eta_{t,i}^l S^l(s) + \varepsilon_{t,i}(s)$$
 for $i = 1,2$

- ξ_i^k for k=1,...,K are a set of fixed effects and $\eta_{t,i}^l$ for l=1,...,L are a set of random effects to describe additional spatial variability but assumed to be independent across time.
- Motivated by Basis Graphical Lasso (BGL) we set $U^k(s)$ and $S^l(s)$ to be known orthogonal basis functions (Krock et al.,2021).
- Let $\eta_t^l = (\eta_{t,1}^l, \eta_{t,2}^l)'$ for l = 1, ..., L and assume, $\eta_t^l \sim N(0, Q_l^{-1})$.
- We assume the precision matrix Q of the full vector $\eta_t = (\eta_t^1, ..., \eta_t^L)'$ is, Q = $diag(\boldsymbol{Q_1}, \dots, \boldsymbol{Q_L}).$
- Last term $\varepsilon_{t,i}(s)$ is white noise with zero mean and τ_i^2 variance which is independent from random effects.

GCM projections are usually made at coarse spatial resolutions (~1°).

Introduction



- Downscaled GCM projections are desired for regional studies.
- There are two types of downscaling for climate model outputs.

Global Climate Models (GCMs) produce projections for future climate.

- Dynamical downscaling (DD)
 - Use Regional Climate Models (RCMs) and boundary conditions are generated from GCMs.
 - Computationally expensive.
- Statistical Downscaling (SD)
 - Establish a statistical relationship between coarse-resolution model projections and fine-resolution observations.
 - Computationally less expensive.
- We propose an improved, computationally efficient SD method with a multivariate Gaussian process model.
- We present a demonstration using Sea Surface Temperature (SST).

Data

- We choose Great Barrier Reef (GBR) region as the study region.
- We use,
 - Monthly averaged NASA/JPL Multiscale Ultrahigh Resolution (MUR) satellite SST data at 1km resolution from June 2002 to December 2020.
 - Monthly SST outputs from 19 Coupled Model Intercomparison Project Phase 6 (CMIP6) GCM models at 100km resolution under ssp126 climate scenario.
 - ssp 126 is an extreme mitigation scenario which assumes less warming towards next century.
 - Our choice of the scenario here is only for the demonstration purpose.

Implementation

- Let $U(s) = (U^1(s), ..., U^K(s))'$ and $S(s) = (S^1(s), ..., S^L(s))'$.
- · The model for the full data vector can be written as,

$$\begin{pmatrix} Y_t(s_1) \\ \vdots \\ Y_t(s_N) \end{pmatrix} = \begin{pmatrix} \mu_t(s_1) \\ \vdots \\ \mu_t(s_N) \end{pmatrix} + \begin{pmatrix} U'(s_1) \otimes I_2 \\ \vdots \\ U'(s_N) \otimes I_2 \end{pmatrix} \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^K \end{pmatrix} + \begin{pmatrix} S'(s_1) \otimes I_2 \\ \vdots \\ S'(s_N) \otimes I_2 \end{pmatrix} \begin{pmatrix} \eta_t^1 \\ \vdots \\ \eta_t^L \end{pmatrix} + \begin{pmatrix} \varepsilon_t(s_1) \\ \vdots \\ \varepsilon_t(s_N) \end{pmatrix}$$

where, $\boldsymbol{\xi}^{k} = (\xi_{1}^{k}, \xi_{2}^{k})'$ and $\boldsymbol{\eta}_{t}^{l} = (\eta_{t,1}^{l}, \eta_{t,2}^{l})'$.

- Estimation is done in two-steps.
- Step1: Detrend and obtain the detail residuals vector $Z_t = Y_t \widehat{\mu}_t U\widehat{\xi}$. Then the log-likelihood for the residuals is written as,

$$\begin{split} \log(\det(\pmb{\varSigma})) + \frac{\sum_{t=1}^T Z_t' \pmb{\varSigma}^{-1} \pmb{Z}_t}{T} &= \log(\det(\pmb{\varSigma})) + tr(\widehat{\pmb{\varSigma}} \pmb{\varSigma}^{-1}) \text{ where,} \\ var(\pmb{Z}_t) &= \pmb{\varSigma}, \widehat{\pmb{\varSigma}} = \frac{\sum_{t=1}^T Z_t' \pmb{Z}_t}{T}, \pmb{\varSigma} = \pmb{S} \pmb{Q}^{-1} \pmb{S}' + \pmb{D} \text{ and } \pmb{D} = diag(\tau_1^2, \tau_2^2) \otimes \pmb{I}_N \end{split}$$

Step2: Solve for,

$$\widehat{Q} \in \arg\min\log(\det(SQ^{-1}S'+D)) + tr\left(\widehat{\Sigma}(SQ^{-1}S'+D)^{-1}\right) + P(Q)$$
 where,

 $P(Q) = P(Q_1, ..., Q_L) = \rho \sum_{l=1}^{L-1} \sum_{i \neq j} |(Q_l)_{ij} - (Q_{l+1})_{ij}|$ and ρ is a penalty which penalize Q_l matrices at adjacent levels if the off-diagonals are not similar (Krock et al.,2021).

Results

- We compare Mean Square Error (MSE) of our proposed method with,
 - Interpolated raw GCM projections
 - State-of-art (Standard) SD method for SSTs

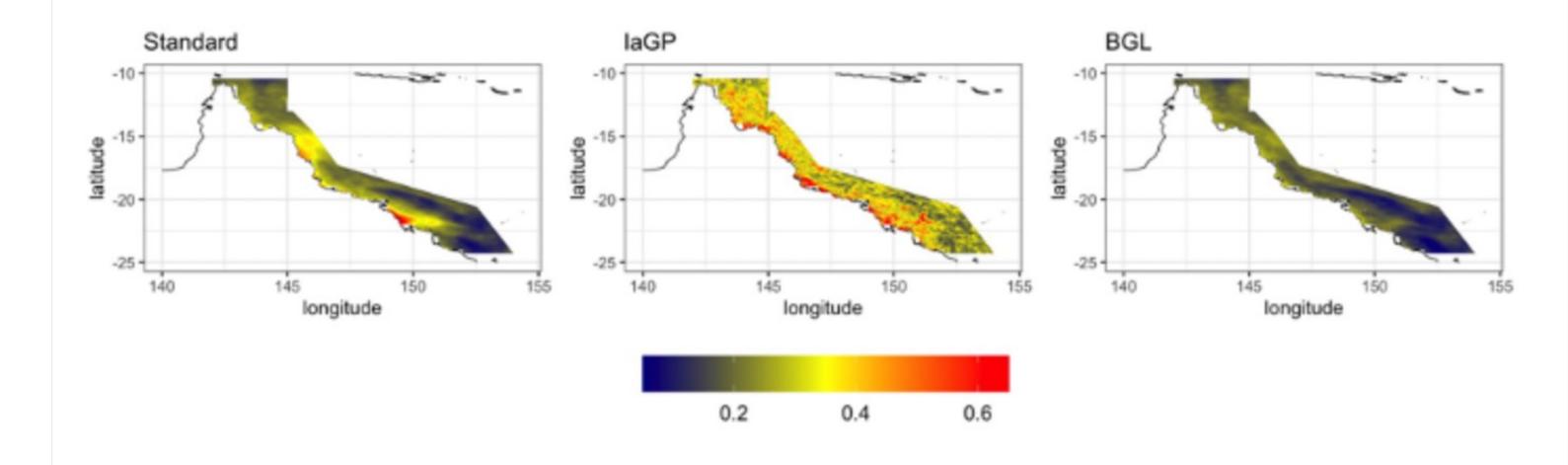
(Van Hooidonk et al.,2015)

 local approximate Gaussian Process (laGP)

(Gramacy et al., 2015)

ssp126				
Season	GCM	Standard	laGP	BGL
Summer	0.396	0.305	0.419	0.297
Autumn	0.472	0.105	0.221	0.088
Winter	0.878	0.250	0.335	0.163
Spring	0.380	0.212	0.356	0.153
Overall	0.531	0.218	0.353	0.175

CINCINNATI



Conclusions and Future Work

- Our downscaling method is computationally feasible for large data sets, accounts for spatio-temporal dependencies, provides meaningful uncertainty estimates, and produce improved downscaling results compared with the stateof-the-art methods.
 - Downscaling for the GBR region (a total of 309,700 high-resolution pixels) was performed in Matlab on a Macbook Air with an 8-core 3.2GHz processor and 8 GB
 - Given the second process $Y_{t,2}(s)$ for $t > T_o$ for all $s \in \mathcal{D}$, computation time to fit the model and estimate SSTs for a single future month is 6.8 seconds.
- A possible extension is to generalize the current model to the framework of autoregressive co-kriging for multi-fidelity model output and then consider the observations, regional climate model output, and global climate model output as the high-, medium-, and low-fidelity data, respectively.

Acknowledgements

 This work is partially funded by, NASA/JPL, NSF (DMS-2053668), Simons Foundation's Collaboration Award (#317298 and #712755), University Research Council (URC) and TAFT research center at University of Cincinnati.