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Introduction

Global Climate Models (GCMs) produce projections for future climate.

GCM projections are usually made at coarse spatial resolutions (~1°).

* There are two types of downscaling for climate model outputs.

* Dynamical downscaling (DD)

* Use Regional Climate Models (RCMs) and boundary conditions are generated from
GCM:s.

* Computationally expensive.
 Statistical Downscaling (SD)

* Establish a statistical relationship between coarse-resolution model projections
and fine-resolution observations.

* Computationally less expensive.

* We propose an improved, computationally efficient SD method with a multivariate
Gaussian process model.

* We present a demonstration using Sea Surface Temperature (SST).

We choose Great Barrier Reef (GBR) region
as the study region.

We use,

* Monthly averaged NASA/JPL Multiscale
Ultrahigh Resolution (MUR) satellite SST
data at 1km resolution from June 2002 to

December 2020.

* Monthly SST outputs from 19 Coupled
Model Intercomparison Project Phase 6
(CMIP6) GCM models at 100km
resolution under ssp126 climate scenario.

* ssp 126 is an extreme mitigation scenario
which assumes less warming towards
next century.

* Our choice of the scenario here is only for
the demonstration purpose.

* LetY;,1(s) be the MUR observational SST at location s on month t and Y; ,(s) be
the deterministically downscaled SST from the standard SD method.

* We assume the bi-variate process, ¥Y,(s) = (Y;1(s),Y;2(s))’ follow,
Ye(s) = pue(s) + ve(s)

* u.(s) is the mean component to describe variation with spatio-temporal
interaction and v,(s) is a multivariate Gaussian process to capture small-scale
spatial variations. We assume,

Vei(s) = Zhoy EFUK(s) + Thoynk iSH(s) + £¢4(s) for i = 1,2

« &ffork =1, ..., K are a set of fixed effects and nf',- forl =1,...,L are a set of

random effects to describe additional spatial variability but assumed to be
independent across time.

* Motivated by Basis Graphical Lasso (BGL) we set U¥(s) and S!(s) to be known
orthogonal basis functions (Krock et al.,2021).

* Letni = (ni1,mi,) forl =1,..,Landassume, ni ~ N(0,Q;1).

* We assume the precision matrix Q of the full vector g, = (¢, ..., ¢)" is, Q =
diag(Ql, s ) QL)

* Last term & ;(s) is white noise with zero mean and t# variance which is
independent from random effects.

Implementation
o Let U(s) = (UL(s), ..., UX(s))' and S(s) = (51(s), ..., SL(s)) .

* The model for the full data vector can be written as,

(Y,(sl)) (m(sl)) (U’(sl)®lz)(f1) C'(S1)®Iz)(ml) (e,(si))
o= i )+ : P+ : 3 B
Y.(sy) He(sy)/ \U'(sy) @I/ \&¥ '(sn) @ I2/ \n,t £ (sy)
where, & = (¢1,¢5)" and 0! = (g1, M 2)'.

* Estimation is done in two-steps.

« Stepl: Detrend and obtain the detail residuals vector Z, = Y, — fiy — U . Then the
log-likelihood for the residuals is written as,

T !
log(det(£)) + 2= 22t _ Jog(det(E)) + tr(BE-1) where,

i !
var(Z,)=%,2 = zt=;z,z¢ ,2=5Q°1S8"+ Dand D = diag(t?,5)®I y

» Step2: Solve for,
Q € argminlog(det(SQ~1S’ + D)) + tr (Z‘(SQ“S’ + D)-l) + P(Q) where,

P(Q) = P(Qy, ., Q1) = p Xt Tie @0y — (Qus1)yy] and p is a penalty which penalize
Q,; matrices at adjacent levels if the off-diagonals are not similar (Krock et al.,2021).
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* We compare Mean Square Error (MSE)

of our proposed method with,

. — sspl126
Interpolated raw GCM projections Season T GCM | Standard T eGP T BGL
» State-of-art (Standard) SD method for | Summer | 0.396 | 0.305 0.419 | 0.297
SSTs Autumn | 0472 | 0.105 0.221 | 0.088
. Winter 0.878 | 0.250 0.335 | 0.163
(¥ Flookannk a6 w1, 215) Spring | 0.380 | 0212 | 0.356 | 0.153 |
* |ocal approximate Gaussian Process Overall | 0.531 | 0.218 0.353 | 0.175

(laGP)
(Gramacy et al., 2015)

Standard

10+ ——™ -
‘ N
154 ‘ :
B <

| \
v v v
440 [
-

latitude
latitude

Vol

v
155

Conclusions and Future Work

* Our downscaling method is computationally feasible for large data sets,
accounts for spatio-temporal dependencies, provides meaningful uncertainty
estimates, and produce improved downscaling results compared with the state-
of-the-art methods.

* Downscaling for the GBR region (a total of 309,700 high-resolution pixels) was

performed in Matlab on a Macbook Air with an 8-core 3.2GHz processor and 8 GB
RAM.

* Given the second process Y; ;(s) for t > T, for all s € D, computation time to fit
the model and estimate SSTs for a single future month is 6.8 seconds.

* A possible extension is to generalize the current model to the framework of
autoregressive co-kriging for multi-fidelity model output and then consider the
observations, regional climate model output, and global climate model output

as the high-, medium-, and low-fidelity data, respectively.

Acknowledgements

* This work is partially funded by, NASA/JPL , NSF (DMS-2053668), Simons
Foundation's Collaboration Award (#317298 and #712755), University Research
Council (URC) and TAFT research center at University of Cincinnati.



