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1 Introduction

General Circulation Models (GCMs) provide extremely informative future projections for the global
climate system under different climate scenarios. These projections are made at relatively lower
resolutions due to computational limitations. However, for the regional climate studies, there is an
increased demand for GCM projections downscaled to much higher resolutions. Downscaling tech-
niques are majorly categorized into two; Dynamical Downscaling (DD) and Statistical Downscaling
(SD). Regional Climate Models (RCMs) with boundary conditions generated from GCMs are used to
perform DD whereas in SD, a statistical relationship is built between high-resolution observational
data and coarse resolution model outputs. DD is computationally expensive. Meanwhile, SD can be
used to perform large-scale downscaling at a much less computational cost.

There are numerous previous SD methods found in the literature which are developed using a range
of statistical tools. A SD method not always is a traditional statistical model-based approach. For
example, deterministic tools such as Model Output Statistics (MOS), smoothing, and interpolation
techniques are widely used to establish the empirical relationship [11],[12]. However, numerical
methods as well as many machine learning approaches do not often produce uncertainty estimates
which is a demanding skill for subsequent regional studies [4]. Methods based on probabilistic models
such as regression and generalized linear models are capable of producing uncertainty estimates. But
such SD methods can be used only in the presence of potential predictor variables [9],[1]. Moreover,
downscaled results may vary with the choice of predictor variables [8]. An advanced spatio-temporal
model directly relating coarse model projections to high-resolution observations is also lately been
utilized effectively accounting for spatio-temporal dependencies [2]. But this method involves MCMC
simulations which is not computationally desired for large-scale studies.

We propose a multivariate Gaussian process model to downscale low-resolution model outputs using
high-resolution remote sensing data. Our proposed method is computationally efficient, accounts for
spatio-temporal dependence, and provides associated uncertainty, that can be used in Earth science
contexts with large data sets. Here, we demonstrate it by downscaling Sea Surface Temperature (SST)
projections to the 1 km scale. We perform a representative case study and validation in the Great
Barrier Reef (GBR) region.
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2 Data and model output

We use monthly averaged NASA/JPL Multiscale Ultrahigh Resolution (MUR, [6]) satellite SST data
at 1 km resolution from June 2002 to December 2020 (a total of 223 months). We use monthly SST
outputs from 19 Coupled Model Intercomparison Project Phase 6 (CMIP6) GCM models under the
Shared Socioeconomic Pathways (SSPs) [10]. For the demonstration purpose, we chose SSP126
which is quite an optimistic climate scenario. The model time series are re-gridded to a common 1◦

grid, and run from June 2002 to December 2099 (1183 months). At each grid location, we take the
mean of these model time series. The study area includes a total of 309,700 (N ) 1 km MUR pixels
and 35 (M ) 1◦ coarse grid cells.

3 Methodology

3.1 Model Specification

Let Yt,1(s) denotes the monthly averaged observational SST at MUR location s on month t and
Yt,2(s) to be the SST obtained from the state-of-art (standard) interpolation-based SD method [12].
Details on standard downscaling is provided in Appendix A. We assume that the bi-variate process
Yt(s) = (Yt,1(s), Yt,2(s))

′ can be additively modeled as,

Yt(s) = µt(s) + νt(s), (1)

where µt(s) denotes the mean of the process, explaining large-scale spatio-temporal variations; the
second term νt(s) is a multivariate Gaussian process (GP) to capture small-scale spatial variations.
To alleviate computational difficulty associated with GP, we use basis representation:

νt,i(s) =

K∑
k=1

ξki U
k(s) +

L∑
l=1

ηlt,iS
l(s) + ϵt,i(s) (2)

where, ξki for k = 1, . . . ,K are a set of fixed effects and ηlt,i for l = 1, . . . , L are a set of random
effects to capture additional fine-scale spatial variations but assumed to be temporally independent.
Here, Uk(s) and Sl(s) are known basis functions. The last term ϵt,i(s) in equation (2) is a Gaussian
white noise process with zero mean and variance τ2i , independent with {ηlt,i}. We assume further

that the random vector ηl
t = (ηlt,1, η

l
t,2)

′ at each level l follows ηl
t ∼ N

(
0,QQQ−1

l

)
. Motivated by

multivariate Basis Graphical Lasso (BGL,[7]), we use empirical orthogonal functions as basis function
in the model and assume that ηl

t’s are independent across L levels [7]. Note that this assumption
of independence across levels still allows spatial dependence within and across Yt,1(s) and Yt,2(s).
The resulting precision matrix QQQ of the full vector ηt = (η1

t , ..,η
L
t )

′ is a sparse matrix of the form;
QQQ = diag(QQQ1, ..,QQQL). A detailed theoretical justification for independence assumption when basis
functions are orthogonal is discussed in [7].

3.2 Implementation and Inference

Let U(s) =
(
U1(s), . . . , UK(s)

)′
and S(s) =

(
S1(s), . . . , SL(s)

)′
. Considering all available N

fine-resolution observation locations, we re-write the model for the full data vector as below.Yt(s1)
...

Yt(sN )

 =

µt(s1)
...

µt(sN )

+

U′(s1)⊗ III2
...

U′(sN )⊗ III2


 ξ1

...
ξK

+

S′(s1)⊗ III2
...

S′(sN )⊗ III2


η1

t
...
ηL
t

+

 ϵt(s1)
...

ϵt(sN )

 (3)

where, ξk = (ξk1 , ξ
k
2)

′ for k = 1, . . . ,K and ηl
t = (ηlt,1, η

l
t,2)

′ for l = 1, . . . , L. For simplicity we
write this model as,

Yt
2N×1

= µt
2N×1

+ UUU
2N×2K

ξ
2K×1

+ SSS
2N×2L

ηt
2L×1

+ ϵt
2N×1

, (4)

Here, UUU = U⊗III2, SSS = S⊗III2 where U and S are basis matrices. Estimation is performed in two steps.
First, we set µt,1(s) = µt,2(s) = µt(s) where, µt(s) is estimated using the 5-year moving average
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of the second process Yt,2(s); i.e. µ̂t(s) =
∑t−1

t−5 Yt,2(s)

5 and subtract it from original processes. We
calculate Empirical Orthogonal Functions (EOFs) and select a subset of EOFs as the basis functions
such that the desired percentage of total variance is explained. To separate EOFs into U and S basis
matrices and to estimate fixed effects, we fit a no intercept linear regression between de-trended
data and EOFs [5]. Regression coefficients with comparatively larger magnitude are chosen to be
the estimated fixed effects. Basis functions corresponds to those fixed effects are taken into the
basis matrix U while the rest of the basis functions are included in the basis matrix S. A detailed
explanation on calculation and separation of EOFs is provided in Appendix C.Then we obtain the full
detail residual vector Zt = Yt − µ̂t −UUUξ̂. Assuming the residuals from each observational month t
is an independent realization of Zt we can write joint negative log-likelihood up-to a normalizing
constant as,

log(det(ΣΣΣ)) +

∑To

t=1 Z′
tΣΣΣ

−1Zt

To
= log(det(ΣΣΣ)) + tr(Σ̂ΣΣΣΣΣ−1) (5)

where To is the number of observational months, V ar(Zt) = ΣΣΣ, Σ̂ΣΣ =
∑To

t=1 Z′
tZt

To
is the sample

covariance matrix. Note that here, ΣΣΣ = SSSQQQ−1SSS′ +DDD, where DDD = diag(τ21 , τ
2
2 )⊗ IIIN .

In the second step, we solve l1−penalized maximum likelihood expression,

Q̂QQ ∈ argmin
QQQ⪰0

log(det(SQQQ−1S′ +DDD)) + tr(Σ̂ΣΣ(SQQQ−1S′ +DDD)−1) + P (QQQ) (6)

where,
P (QQQ) = P (QQQ1, ..,QQQL) = ρ

L−1∑
l=1

∑
i ̸=j

|(QQQl)ij − (QQQl+1)ij |

Here, ρ is a penalty which penalize QQQl matrices at adjacent levels if the off-diagonals are not similar.
Our penalization parameter here is similar to the fusion penalty introduced in [7] favouring the
coherence of the SST processes to vary smoothly across the levels. An appropriate value for the
penalty ρ can be chosen through a cross-validation procedure. Note that, evaluation of the likelihood in
expression (6) requires an expensive Choleskey decomposition (O(p3N3)) where p is the number of
processes and N is the number of observational locations. Appendix B explains efficient computation
of the likelihood in (6).

3.3 Prediction

Recall we assume a bi-variate normal distribution for the vector of random effects ηl
t = (ηlt,1, η

l
t,2)

′

at each level l. Once Q̂QQl is estimated, it is straightforward to obtain the conditional distribution of
ηlt,1|ηlt,2.

ηlt,1|ηlt,2 ∼ N
(σ12

σ22
ηlt,2, σ11 −

σ2
12

σ22

)
(7)

Note that we can write the model only for the second process Yt,2 =
(
Yt,2(s1), . . . , Yt,2(sN )

)′
as,

Yt,2 = µt,2 + Uξ2 + SAηt + ϵt,2 (8)

where ξ2 =
(
ξ12 , . . . , ξ

K
2

)′
and A is a known linear transformation matrix such that Aηt =(

η1t,2, . . . , η
L
t,2

)′
. We have ξ2 already estimated and given the second process Yt,2 for a future

month t > To, we can easily estimate µt,2 as described in section 3.2. Thus, we first obtain Gen-

eralized Least Squares (GLS) estimates; η̂t,2 =
(

SΣΣΣ−1
2 S′

)−1

SΣΣΣ−1
2 Zt,2 where, ΣΣΣ2 = V ar(Zt,2) =

V ar(SAηt + ϵt,2) = SAQQQ−1A′S′ + D2 and D2 = τ22 IIIN . Now, using the conditional distribution in
equation (7) and the law of total expectation, we can calculate conditional expectation of ηlt,1 as,

η̂lt,1 = Exp
[
ηlt,1|Zt,2

]
= Exp

[
Exp

[
ηlt,1|ηlt,2,Zt,2

]
|Zt,2

]
(9)

with V ar
[
ηlt,1|Zt,2

]
= Exp

[
V ar

[
ηlt,2|ηlt,1,Zt,2

]
|Zt,2

]
+ V ar

[
Exp

[
ηlt,1|ηlt,2,Zt,2

]
|Zt,2

]
condi-

tional variance. Finally, we obtain the vector of downscaled SSTs Ŷt,1 for a future month t > To as,

Ŷt,1 = µ̂t,1 + Uξ̂1 + Sη̂t,1 (10)
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Figure 1:
MSE maps of standard(left), laGP(middle) and BGL(right) methods from MUR validation under

ssp126.

Table 1: Averaged MSE separated by seasons from MUR validation

ssp126
Season GCM Standard laGP BGL
Summer 0.396 0.305 0.419 0.297
Autumn 0.472 0.105 0.221 0.088
Winter 0.878 0.250 0.335 0.163
Spring 0.380 0.212 0.356 0.153
Overall 0.531 0.218 0.353 0.175

4 Results

We performed validation leaving out the three years from 2018 to 2020 to assess the performance of
the proposed method. Downscaling for the GBR region (a total of 309,700 high-resolution pixels)
was performed in Matlab on a Macbook Air with an 8-core 3.2GHz processor and 8 GB RAM. Given
the second process Yt,2 for t > To, it only took 6.8 seconds to produce downscaled SSTs for a single
future month.

We compare performance with the state-of-art (standard) SD method in literature for SSTs proposed
using an interpolation-based method [12] and with another approach using local approximate Gaussian
Process (laGP) [3]. In table 1, we compare Mean Squared Error(MSE) values averaged across
locations. First column in the table shows MSE values obtained by simply interpolating row GCM
data. Notice that our method has the lowest MSE values and the percentage reduction in overall MSE
is about 20% when it is compared to the standard SD method. In figure 1, we compare the maps of
MSE values averaged across seasons. Notice the striking improvement, especially along the coastal
line. This improved accuracy is expected because, unlike the stat-of-art, our model is capable of
successfully accounting for fine-scale spatial dependencies. We observe an unusual instability in the
MSE map from the laGP method which is due its local structure.

5 Conclusion and Discussion

We have presented a novel statistical downscaling method. Our method is computationally feasible
for large data sets, accounts for spatio-temporal dependencies, provides meaningful uncertainty
estimates and has significantly reduced overall MSE. Therefore, it is suitable for a wide range of
applications in Earth science and other fields, e.g. for accomplishing the SD of coarse-scale global
climate model projections using fine-scale observational data. A possible extension is to generalize
the current model to the framework of autoregressive co-kriging for multi-fidelity model output and
then consider the observations, regional climate model output, and global climate model output as the
high-, medium-, and low-fidelity data, respectively.
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A Standard Downscaling

This standard downscaling method is easy to perform and costs computationally less. But the method
does not produce any uncertainty estimates and from the results in section 4, we prove that the SSTs
produced from this method have higher prediction errors. To perform this downscaling, first model
mean needs to be subtracted from GCM data. i.e if Wt(B) is the GCM outputs at coarse grid cell B
for month t, mean centered GCM projection W centered

t (B) is obtained as,

W centered
t (B) = Wt(B)−

∑To

t=1 Wt(B)

To
(11)

where To is the total number of observational months. For example, if month t is a January, To is the
total number of Januaries in the observational period. Then the resulting time series {W centered

t }
for t = 1, . . . , T ;T > To is interpolated to MUR pixels using bivariate interpolation. If {wcentered

t }
is the interpolated time series which is now available at MUR resolution, Yt,2(s) at MUR pixel s is
finally obtained by adding wcentered

t (s) to the observational SST average at MUR location s.

Yt,2(s) =

∑To

t=1 Yt,1(s)

To
+ wcentered

t (s) (12)
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B Efficient Likelihood Computation

Using the Sherman-Morrison-Woodbury formula, likelihood expression in (6) can be re-written
reducing likelihood evaluation to O(p3L3) as,

log(det(QQQ + S′DDD−1S))− log(det(QQQ))−
tr(S′DDD−1Σ̂ΣΣDDD−1S(QQQ + S′DDD−1S)−1) + P (QQQ) (13)

The block-diagonal structure of QQQ further reduces matrix computation of size pL× pL to L computa-
tions of p×p matrices. However, the likelihood in expression (13) is still non-smooth and non-convex
with respect to QQQ. Thus, estimation is performed using difference-of-convex (DC) algorithm where
the next guess of QQQ is obtained by solving a convex optimization problem with the concave part
linearized at the previous guess QQQ(j) [7].

C EOFs Calculation and Separation

In the current study, we only have a limited number of observational months. Thus, to have a
reasonable number of EOFs per model, we group months into seasons and fit four different models
for the four seasons. For example, to fit the model for the summer season, we combine data from
December,January and February months. Therefore, the total number of observational months for
summer season TO =

∑3
j=1 Toj ; where j = 1, 2, 3 for December, January and February. EOFs are

calculated combining de-trended data from the respective months into N × p×TO data matrix where
N is the total number of MUR locations and p is the number of processes. Then we take economic
form of the Singular Value Decomposition (SVD) of the constructed matrix.

EOFs only with large eigen values are chosen such that the desired percentage of the total variance is
explained. Then we follow the idea presented in [5] to separate EOFs into UUU and SSS basis matrices.
That is, we use the QQ-plot of regression coefficients obtained by fitting a no-intercept regression
between Y2 − µ̂2 (or Y1 − µ̂1 ) and EOFs. Here, Yi − µ̂i =

[
(Y1,i − µ̂1,i), . . . , (YTo,i − µ̂To,i)

]
where Yt,i =

(
Yt,i(s1), . . . , Yt,i(sN )

)′
and µ̂t,i =

(
µ̂t,i(s1), . . . , µ̂t,i(sN )

)′
. Let {ωm} where

m = 1, . . . ,K + L be the vector of OLS estimates and ||ωm||p be the p-quantile of the vector of
{|ωm|}. Then if qp is the p-quantile of the standard Gaussian distribution, a slope τ̂ is estimated as
follows.

τ̂ = ||ωm||1−2α/q1−α (14)

Here α is chosen such that the QQ-line with slope τ̂ fits the estimated coefficients that are small
or moderate in absolute value. Finally, A large absolute coefficient is defined as a coefficient
which satisfies: |ωm| > τ̂ × qmax where, qmax ≡ max{q(1−p) : |ωm|(1−2p) < τ̂q(1−p), p =
1/2l, 2/2l, ..., 1/2}. See the figure 2. Based on the QQ-plot we choose the basis functions for matrix
UUU whose coefficients are significantly large while the rest of the basis functions go into basis matrix
SSS.

D laGP Model

In this model setup we assume,Yt,1(s1)
...

Yt,1(sN )


︸ ︷︷ ︸

Yt,1

=

µt,1(s1)
...

µt,1(sN )


︸ ︷︷ ︸

µt,1

+

 ϵt,1(s1)
...

ϵt,1(sN )


︸ ︷︷ ︸

ϵt,1

(15)

where, µt,1 is the vector of mean component and assume ϵt,1 ∼ GP
(
µ(.),C(., .)

)
. GP is a popular

modeling tool in spatial statistics and computer experiments because of its ability to handle non-
stationary processes through flexible covariance structures. But, as modeling with GP becomes
computationally infeasible with large data, we used local approximate Gaussian Process (laGP) which
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Figure 2:
QQ-plot of estimated coefficients of basis functions for the summer season.

is an efficient approximation to full GP [3]. The method is implemented in R package laGP. To make
a prediction at a location xo, laGP() function takes two inputs called the design matrix (XXX) and the

response vector (Z). We set Z =
(

Z′
1,1, . . . ,Z′

To,1

)′
where Zt,1 = Yt,1 − µ̂t,1. Again, µ̂t,1 here is

the estimated mean as described in section 3.2. We used three input variables for the design matrix
XXX namely; longitude, latitude and the variable Zt,2 = Yt,2 − µ̂t,2. For a future month t > To, ϵ̂t,1
will be the predictive mean with the respective predictive variance from laGP. Finally, the vector of
downscaled SSTs Ŷt,1 for t > To is,

Ŷt,1 = µ̂t,1 + ϵ̂t,1 (16)
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