
c-TPE: Generalizing Tree-structured Parzen
Estimator with Inequality Constraints for Continuous

and Categorical Hyperparameter Optimization

Shuhei Watanabe1 Frank Hutter1 2

1 Department of Computer Science, University of Freiburg, Germany
2 Bosch Center for Artificial Intelligence, Renningen, Germany

{watanabs,fh}@cs.uni-freiburg.de

Abstract

Hyperparameter optimization (HPO) is crucial for strong performance of deep
learning algorithms. A widely-used versatile HPO method is a variant of Bayesian
optimization called tree-structured Parzen estimator (TPE), which splits data into
good and bad groups and uses the density ratio of those groups as an acquisition
function (AF). However, real-world applications often have some constraints, such
as memory requirements, or latency. In this paper, we present an extension of TPE
to constrained optimization (c-TPE) via simple factorization of AFs. The experi-
ments demonstrate c-TPE is robust to various constraint levels and exhibits the best
average rank performance among existing methods with statistical significance on
search spaces with categorical parameters on 81 settings.

1 Introduction

While deep learning has achieved various breakthrough successes, its performance highly depends on
proper settings of its hyperparameters (Chen et al. (2018); Melis et al. (2018)). Furthermore, practical
applications often impose several constraints on computational memory or latency of inference. In
such cases, we need to extend the usual hyperparameter optimization (HPO) task to constrained
optimization settings.

Recently, many open source softwares (OSS) for HPO have been developed such as Optuna (Akiba
et al. (2019)), Hyperopt (Bergstra et al. (2013)), and Ray (Liaw et al. (2018)). All of these support a
variant of Bayesian optimization (BO) called the Tree-structured Parzen estimator (TPE) (Bergstra
et al. (2011, 2013)), and Optuna, which uses TPE as its main algorithm, was core to reaching the
second place in the Open Images Object Detection Competition (Akiba et al. (2019)). As a BO
method, TPE determines the next configuration using a surrogate model and an acquisition function
(AF) that judges the promise of a configuration based on the surrogate model. While standard BO
uses Gaussian process for the surrogate, TPE uses the ratio of Parzen estimators for good and bad
observations (Bergstra et al. (2011)). Although TPE has been used widely due to its versatility and
stable performance even when the search space contains categorical parameters, it has not been
extended to constrained optimization and thus practitioners facing constraints need to use alternatives.

In this paper, we show how to extend TPE to constrained optimization settings. Since the AF of
TPE is probability of improvement (PI), but not expected improvement (EI), we can simply take
the product of AFs in both the objective and constraints based on the AF proposed by Gelbart et al.
(2014). Note that if we naïvely combine those ideas, c-TPE will not work well and thus we provide
an in-depth analysis on how to enhance c-TPE in Appendix B. In the series of experiments, we
demonstrate (1) the strong performance of c-TPE with statistical significance on search spaces that
include categorical parameters and (2) robustness to changes in the constraint level. As used tabular

2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems.

Algorithm 1 c-TPE algorithm
1: Ninit (The number of initial configurations), Ns (The number of candidates to consider in the

optimization of the AF)
2: D ← ∅
3: for n = 1, . . . , Ninit do
4: Randomly pick x
5: D ← D ∪ {(x, f(x), c1(x), . . . , cC(x))}
6: while Budget is left do
7: S = ∅
8: for i = 0, . . . , C do
9: Split D into D(l)

i and D(g)
i , γ̂i ← |D(l)

i |/|D|
10: Build p(x|D(l)

i), p(x|D(g)
i)

11: {xj}Ns
j=1 ∼ p(x|D

(l)
i),S ← S ∪ {xj}Ns

j=1

12: Pick xopt ∈ argmaxx∈S
∏C
i=0 r

rel
i (x|D)

13: D ← D ∪ {(xopt, f(xopt), c1(xopt), . . . , cC(xopt))}

benchmarks do not represent all possible tasks, we discuss the limitations of our work in Appendix J.
The full results of the experiments are available in Appendix.

2 Constrained TPE (c-TPE)
In this section, we briefly describe the AF of c-TPE and its algorithm. We provide the theoretical
background and the analysis for the algorithm construction in Appendices A, B.

2.1 The acquisition function
In single-objective optimization problems, TPE (Bergstra et al. (2011)) first splits a set of observations
D = {(xn, f(xn))}Nn=1 intoD(l) andD(g) by a threshold fγ that is the top γ-quantile objective value
in D. Then we build Parzen estimators p(x|D(l)), p(x|D(g)) and compute the AF via r(x|D) :=
p(x|D(l))/p(x|D(g)). This density ratio is known to be EI (Bergstra et al. (2011)). The extension of
EI to constrained settings is ECI invented by Gardner et al. (2014) and Gelbart et al. (2014) and this
AF takes the product of EI of the objective and PIs of constraints. Using the formulations, we show
that the AF of c-TPE is equivalent to

∏C
i=0 r

rel
i (x|D) :=

∏C
i=0(γ̂i + (1− γ̂i)ri(x|D)−1))−1 where

ri(x|D) := p(x|D(l)
i)/p(x|D(g)

i) is the density ratio of the i-th constraint for i ∈ {1, . . . , C} and
that of the objective for i = 0,D(l)

i ,D(g)
i are obtained by splittingD based on the algorithm discussed

in Section 2.2, and γ̂i := |D(l)
i |/|D|. We describe more details about the background knowledge in

Appendix A and those about the validity of the formulation in Appendix B.

2.2 Algorithm modification details from a naïve combination

Algorithm 1 is the pseudocode of c-TPE with color-coded modifications. The modifications of the
algorithm compared to a naïve combination of TPE and ECI are as follows:

1. Split algorithm of D (Line 9; more details in Appendix B.3)
2. Computation of ECIf? [x|c?,D] (Line 12)

Note that the benefits of those modifications are dicussed in Appendix B.2.

The split algorithm in the original TPE by Bergstra et al. (2013) first sorts the observations D by f
and takes the first d

√
N/4e observations as D(l)

0 and the rest as D(g)
0 . On the other hand, our method

includes all the observations until the d
√
N/4e-th feasible observation into D(l)

0 and the rest into
D(g)

0 . As mentioned earlier, this split guarantees D(l)
0 to have at least one feasible solution unless we

have no feasible solutions. For the split of constraints, we first check the upper bound of {ci,n}Nn=1
that satisfies a given threshold c?i and let this value be c′i. Note that ci,n is the i-th constraint value in
the n-th observation. If such values do not exist, we take the best value min{ci,n}Nn=1 so that the
optimization of this constraint will be strengthened (see Theorem 1 in Appendix). Then we split D
into D(l)

i and D(g)
i so that D(l)

i includes only observations that satisfy ci,n ≤ c′i and vice versa.

2

Table 1: The table shows (Wins/Loses/Ties) of c-TPE against each method for optimizations with
different constraint levels. Bold numbers indicate p < 0.01 of the hypothesis “The other method is
better than c-TPE” by the Wilcoxon signed-rank test.

Quantiles γtrue
i = 0.1 γtrue

i = 0.5 γtrue
i = 0.9

Methods / # of configs 50 100 150 200 50 100 150 200 50 100 150 200

Naïve c-TPE 26/0/1 27/0/0 27/0/0 27/0/0 25/0/2 25/0/2 25/1/1 25/0/2 21/5/1 23/1/3 21/1/5 24/1/2
Vanilla TPE 27/0/0 27/0/0 27/0/0 27/0/0 25/0/2 26/0/1 26/1/0 24/0/3 14/11/2 18/8/1 15/5/7 16/7/4
Random 25/0/2 26/1/0 27/0/0 27/0/0 27/0/0 26/0/1 26/0/1 27/0/0 27/0/0 27/0/0 27/0/0 27/0/0
CNSGA-II 25/0/2 27/0/0 24/0/3 24/0/3 26/0/1 26/0/1 26/0/1 25/0/2 26/1/0 27/0/0 27/0/0 26/0/1
NEI 24/1/2 27/0/0 27/0/0 27/0/0 27/0/0 26/0/1 26/0/1 27/0/0 27/0/0 27/0/0 27/0/0 27/0/0
HM2 23/2/2 26/1/0 25/2/0 25/2/0 22/3/2 23/2/2 25/1/1 23/0/4 27/0/0 27/0/0 23/0/4 26/0/1

The computation of the AF uses
∏C
i=0 r

rel
i (x|D) instead of a naïve computation

∏C
i=0 ri(x|D). Its

validity is described in Appendix B.1.

3 Experiments
3.1 Setup
In the experiments, we report a comprehensive evaluation of c-TPE on tabular benchmarks. The
reason behind this choice is that tabular benchmarks enable us to control the quantiles of each
constraint γtrue

i . The quantile γtrue
i can be obtained by looking up all the results and we use 9

different γtrue
i to observe the performance variation on different difficulties.

The evaluations were performed on (1) HPOlib (4 benchmarks by Klein and Hutter (2019)), (2)
NAS-Bench-101 (3 benchmarks by Ying et al. (2019)), and (3) NAS-Bench-201 (3 benchmarks by
Dong and Yang (2020)), and the search space for each benchmark followed Awad et al. (2021). As
constraints, we use network size, runtime, or both.

As the baseline methods, we chose (1) random search (Bergstra and Bengio (2012)), (2) CNSGA-II
(Deb et al. (2002)), (3) NEI provided in Facebook Ax (Letham et al. (2019)), (4) Hypermapper2.0
(HM2) (Nardi et al. (2019)), (5) vanilla TPE (optimize only loss as if we do not have constraints) (6)
naïve c-TPE (the naïve combination discussed in Section 2.2). Note that we could not perform the
optimization of CIFAR10C in NAS-Bench-101 using NEI and HM2 due to too long computation
time and thus we perform a statistical test using only 9 benchmarks (other than CIFAR10C).

For more details about how to calculate γtrue
i , tabular benchmark datasets, and the baseline meth-

ods, see Appendix F. The source code is available at https://github.com/nabenabe0928/
constrained-tpe along with complete scripts to reproduce the experiments, tables, and figures.

3.2 Results
In Figure 1, we show how c-TPE performance improves given various levels of constraints and we
chose γtrue

i ∈ {0.1, 0.5, 0.9} for this figure; see Appendix G for the complete results of γtrue
i ∈

{0.1, 0.2, . . . , 0.9}. Table 1 presents the numbers of wins/loses/ties and statistical significance by
the Wilcoxon signed-rank test over 27 settings (9 benchmarks × 3 constraint choices). Note that we
used the results of the optimizations on all datasets in the statistical test and the number of wins was
counted by comparing medians of performance between two methods. In Appendix H, we provide
the full results of the average rank over time for each constraint level.

As seen in the bottom figures, the naïve c-TPE is completely defeated by other methods while c-TPE
achieves the best or at least indistinguishable performance from the best. This gap is caused by small
overlaps of the promising regions in the objective and constraints as discussed in Appendix B.2.2.
In fact, 41% of the top-10% configurations belong to infeasible domains in NAS-Bench-201 of
γtrue
i = 0.9 although only 16% and 23% are infeasible in HPOlib and NAS-Bench-101 of γtrue

i = 0.9,
respectively. This fact also affects the discrepancy between c-TPE and the vanilla TPE. As TPE is
not a uniform sampler and tries to sample from promising regions, γ̂i will not necessarily approach
γtrue
i . For example, it is natural to consider γ̂i to be closer to 100− 41 = 59% rather than 90% in

the top-10% domain as 59% of configurations are feasible there. Since this ratio is much lower than
γtrue
i , the performance of c-TPE is much better than the vanilla TPE due to Theorem 1 in Appendix.

For the middle figures of γtrue
i = 0.1, 0.5, most methods exhibit indistinguishable performance

from random search especially in the beginning because of the combination of the high dimensional

3

https://github.com/nabenabe0928/constrained-tpe
https://github.com/nabenabe0928/constrained-tpe

10 1

100

101

102

103

Sl
ic

e
Lo

ca
liz

at
io

n

true
i -quantile: 0.1 0.5 0.9

100

C
IF

A
R

10
A

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

10 1

6 × 10 2

2 × 10 1

3 × 10 1
4 × 10 1

0 50 100 150 20010 2

10 1

Im
ag

eN
et

0 50 100 150 200

c-TPE Naïve c-TPE Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 1: Figures show the performance curves on Slice Localization in HPOlib, CIFAR10A in
NAS-Bench-101, and ImageNet16-120 in NAS-Bench-201 with constraints of runtime and network
size. We picked γtrue

i = 0.1 (left), 0.5 (center), 0.9 (right). The vertical axis shows the absolute
percentage loss (fobserved − foracle)/foracle where foracle is determined by looking up all feasible
configurations in each benchmark. Note that each row shares the vertical axis except NAS-Bench-101.
For γtrue

i = 0.1 in NAS-Bench-101, we separately scaled for the readability. All results and further
discussion are available in Appendix G.

search space (D = 26) and little information on feasible domains in the early stage of optimizations
although c-TPE outperforms in the end. In γtrue

i = 0.9, the naïve c-TPE is slightly better than c-TPE
due to large overlaps (84% of the top-10% configurations are feasible). It implies that if search space
is high dimension and overlaps in promising regions and feasible domains are large, it might be
better to greedily optimize the objective rather than regularizing the optimization of the objective by
considering constraints.

For the top figures, c-TPE outperforms other methods and its performance almost coincides with
that of the vanilla TPE in γtrue

i = 0.9. Since the naïve c-TPE does not consider the priority of each
constraint and the objective, it does not exhibit stability when the constraint level changes.

As seen in the figures, while the performance of c-TPE, in fact, is stable across all constraint levels,
the performance of NEI, HM2, and CNSGA-II variate depending on constraint levels. Furthermore,
Table 1 shows that c-TPE is significantly better than other methods in almost all settings. This
experimentally validates the robustness of c-TPE to the variations in constraint levels.

4 Conclusion
In this paper, we introduced c-TPE, a new Bayesian constrained optimization method. The AF of
c-TPE is naturally extended from the original formulation. In Section 2, we provided the naïve
combination of constrained BO and TPE and described why the naïve extension fails in some
circumstances. In the experiments, we first showed that the performance of c-TPE is not degraded
over various constraint levels while the other BO methods we evaluated (HM2 and NEI) degraded
as constraints became looser. Furthermore, the proposed method outperformed the other methods
with statistical significance; however, since we focus only on the tabular benchmarks to enable the
stability analysis of the performance variations depending on constraint levels, we discuss other
possible situations where c-TPE might not perform well in Appendix J. Since TPE is very versatile
and prominently used in several active OSS tools, such as Optuna and Ray, and since c-TPE is an
extension to the constrained setting that showed significant performance among existing methods
available in those packages, c-TPE is likely to be integrated into those packages quickly and yield
direct positive impact to practitioners in the future. To this end, we also discuss potential societal
impacts that our method might cause in Appendix K.

4

Acknowledgments

The authors would like to acknowledge the valuable contributions of the anonymous reviewers and
helpful feedback from Eddie Bergman and Noor Awad. This research is funded by the Robert Bosch
GmbH, by the German Federal Ministry of Education and Research (BMBF, grant RenormalizedFlows
01IS19077C), and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG

References
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter

optimization framework. In International Conference on Knowledge Discovery & Data Mining,
2019.

N. Awad, N. Mallik, and F. Hutter. DEHB: Evolutionary hyberband for scalable, robust and efficient
hyperparameter optimization. arXiv:2105.09821, 2021.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(2), 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems, 2011.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In International Conference on Machine
Learning, 2013.

Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver, and N. de Freitas. Bayesian
optimization in alphago. arXiv:1812.06855, 2018.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

X. Dong and Y. Yang. NAS-bench-201: Extending the scope of reproducible neural architecture
search. arXiv:2001.00326, 2020.

J. Gardner, M. Kusner, ZE. Xu, K. Weinberger, and J. Cunningham. Bayesian optimization with
inequality constraints. In International Conference on Machine Learning, 2014.

M. Gelbart, J. Snoek, and R. Adams. Bayesian optimization with unknown constraints.
arXiv:1403.5607, 2014.

A. Klein and F. Hutter. Tabular benchmarks for joint architecture and hyperparameter optimization.
arXiv:1905.04970, 2019.

B. Letham, B. Karrer, G. Ottoni, and E. Bakshy. Constrained bayesian optimization with noisy
experiments. Bayesian Analysis, 14(2):495–519, 2019.

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. Gonzalez, and I. Stoica. Tune: A research platform for
distributed model selection and training. arXiv:1807.05118, 2018.

G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language models.
In International Conference on Learning Representations, 2018.

L. Nardi, D. Koeplinger, and K. Olukotun. Practical design space exploration. In International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
pages 347–358. IEEE, 2019.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International Conference on Machine Learning, 2019.

5

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] Please see Section 2 for the discussion of the
modifications we made and Section 3 for the discussion of the performance analysis.

(b) Did you describe the limitations of your work? [Yes] Please see Appendix J.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

Appendix K.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see
Section A.2.

(b) Did you include complete proofs of all theoretical results? [Yes] Please see Appendix C.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Please check
https://github.com/nabenabe0928/constrained-tpe/.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Please see Section 2 for the algorithm construction and Appendix F for
the hyperparameter choices.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Please see Appendix G. For the average rank, we do
not put error bars because the average ranks is the mean over all experiment settings
of ranks by median with respect to random seeds. We could technically add standard
deviation bands of the mean of ranks by median, but this is not really common. We,
instead, provide the statistical test using 50 random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The computational time is out of
scope in this paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Please check

Appendix F.
(b) Did you mention the license of the assets? [No] We did not mention it in the pa-

per, but we already added Apache2.0 to the repository. https://github.com/
nabenabe0928/constrained-tpe/.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

6

https://github.com/nabenabe0928/constrained-tpe/
https://github.com/nabenabe0928/constrained-tpe/
https://github.com/nabenabe0928/constrained-tpe/

Appendix

A Background
A.1 Preliminaries
We use the following definitions to make the discussion of constraint levels simpler:
Definition 1 (γ-quantile value) Given a quantile γ ∈ (0, 1] and a measurable function f : X → R,
γ-quantile value fγ ∈ R is a real number such that

γ =

∫
x∈X

1[f(x) ≤ fγ]
µ(dx)

µ(X)
. (1)

where µ is the Lebesgue measure on X .

Definition 2 Given a constraint c : X → R and a constraint threshold c? ∈ R, γc? is defined as the
quantile of the constraint c such that c? = cγc? .

Definition 3 (Γ-feasible domain) Given a set of constraints c?i ∈ R (for i ∈ {1, . . . , C}) and a
quantile Γ ∈ (0, 1], the domain is said to be the Γ-feasible domain if X ′ = {x ∈ X |∀i, ci(X) ≤ c?i }
satisfies Γ = µ(X ′)/µ(X).

Note that x ∈ RD is a hyperparameter configuration, X = X1 × · · · × XD is the search space of
the hyperparameter configurations, Xd (for d = 1, . . . , D) is the domain of the i-th hyperparameter,
Note that we consider two assumptions mentioned in the next section and those assumptions allow
the whole discussion to be extended to search spaces with categorical parameters.

A.2 Assumptions

In this paper, we assume the following:

1. Objective function f : X → R and constraint functions ci : X → R are Lebesgue integrable
and are measurable functions defined over the compact measurable subset X ⊆ RD,

2. The support of the probability of improvement for the objective P(f ≤ f?|X ,D) and
each constraint P(ci ≤ c?i |x,D) covers the whole domain X for an arbitrary choice of
f?, c?i ∈ R,

where D = {(xn, fn, cn)}Nn=1 is a set of observations, and cn = [c1,n, . . . , cC,n] ∈ RC is the
n-th observation of each constraint. The Lebesgue integrability easily holds for TPE as TPE only
considers the order of each configuration and almost all functions are measurable unless they are
constructive. Note that we also assume a categorical parameter to be Xi = [1,K] as in the TPE
implementation (Bergstra et al. (2011)) where K is a number of categories. As we do not require
the continuity of f and ci with respect to hyperparameters in our theoretical analysis, this definition
is valid as long as the employed kernel for categorical parameters treats different categories to be
equally similar such as Aitchison-Aitken Kernel proposed by Aitchison and Aitken (1976). In this
definition, x, x′ ∈ Xi are viewed as equivalent as long as bxc = bx′c and it leads to the random
sampling of each category to be uniform and the Lebesgue measure of X to be non-zero.

A.3 Bayesian optimization (BO)
Suppose we would like to minimize a loss metric f(x) = L(x,A,Dtrain,Dval) of a supervised
learning algorithmA given training and validation datasetsDtrain,Dval, then the formulation of HPO
is defined as follows:

xopt ∈ argmin
x∈X

f(x). (2)

In Bayesian optimization (BO) (Brochu et al. (2010); Shahriari et al. (2016); Garnett (2022)), we
assume that f(x) is expensive and consider the optimization in a surrogate space given observations
D. First, we build a predictive model p(f |x,D) where D = {(xn, fn)}Nn=1 is a set of observations.
Then, the optimization in each iteration is replaced with the optimization of the so-called acquisition
function (AF). A common choice for the AF is the following EI (Jones et al. (1998)):

EIf? [x|D] =

∫ f?

−∞
(f? − f)p(f |x,D)df. (3)

BO proposes the next configuration to evaluate via the optimization of the AF.

7

A.4 Tree-structured Parzen estimator (TPE)

TPE (Bergstra et al. (2011, 2013)) is a variant of BO methods and it uses the EI. To transform Eq. (3),
we assume the following:

p(x|f,D) =

{
p(x|D(l)) (f ≤ fγ)
p(x|D(g)) (f > fγ)

(4)

where D(l),D(g) are the observations with fi ≤ fγ and fi > fγ , respectively. Note that fγ is the
top-γ quantile objective value in D at each iteration and p(x|D(l)), p(x|D(g)) are built by the kernel
density estimation (Bergstra et al. (2011, 2013); Falkner et al. (2018)). Combining Eqs. (3), (4) and
Bayes’ theorem, the AF of TPE is computed as (Bergstra et al. (2011)):

EIf? [x|D]
affine∝ r(x|D) := p(x|D(l))/p(x|D(g)). (5)

where φ(x)
affine∝ ψ(x) means there exist a ∈ R+, b ∈ R such that ∀x ∈ X , φ(x) = aψ(x) + b and

we use f? = fγ at each iteration. In each iteration, TPE samples configurations from p(x|D(l)) and
takes the configuration that satisfies the maximum r(x|D) among the samples.

A.5 BO with unknown constraints

We consider unknown constraints ci(x) = Ci(x,A,Dtrain,Dval), e.g. memory consumption of
algorithm A given a configuration x. Then the optimization is formulated as follows:

xopt ∈ argmin
x∈X

f(x)

subject to ∀i ∈ {1, . . . , C}, ci(x) ≤ c?i
(6)

where c?i ∈ R is a threshold for the i-th constraint. Note that we reverse the sign of inequality
in the case where constraints must be larger than a given threshold. To extend BO to constrained
optimization, the following expected constraint improvement (ECI) has been proposed (Gelbart et al.
(2014)):

ECIf? [x|c?,D] = EIf? [x|D]

C∏
i=1

P(ci ≤ c?i |D), (7)

where c? = [c?1, . . . , c
?
C] ∈ RC and D = {(xn, fn, cn)}Nn=1 is a set of observations, and cn =

[c1,n, . . . , cC,n] ∈ RC is the n-th observation of each constraint. When we model the conditional
dependence, we obtain

ECIf? [x|c?,D] = EIf? [x|D]P(c1 ≤ c?1, . . . , cC ≤ c?C |D). (8)
However, the simplified factorized form of Eq. (7) is the common choice.

B More details about constrained TPE (c-TPE)
In this section, we first prove that EI and PI are intrinsically equivalent in the TPE formulation and
thus TPE can be extended to the constrained settings via the simple product of the AFs. Then we
describe an extension naïvely inspired by the original TPE and discuss two pitfalls that prevent the
naïve extension from efficient search. We propose modifications for those issues and present how the
modifications make difference on synthetic problems.

B.1 The acquisition function
Suppose we would like to solve constrained optimization problems formalized in Eq. (6) with the
ECI. To realize the ECI in TPE, we first show the following proposition.

Proposition 1 Under the TPE formulation, EIf? [x | D] ∝ P(f ≤ f? | x,D) holds.

The proof is provided in Appendix C.1. Since PI and EI are equivalent under the TPE formulation,
we obtain the following by combining Proposition 1 and Eq. (7) under the TPE formulation:

ECIf? [x|c?,D] = EIf? [x|D]

C∏
i=1

P(ci ≤ c?i |x,D)

∝ EIf? [x|D]

C∏
i=1

EIc?i [x|D] ∝ P(f ≤ f?|x,D)︸ ︷︷ ︸
affine∝ r0(x|D)

C∏
i=1

P(ci ≤ c?i |x,D)︸ ︷︷ ︸
affine∝ ri(x|D)

.

(9)

8

Note that we provide the definition of ri(x|D) for i ∈ {0, 1, . . . , C} in the next section.

B.2 Two pitfalls in a naïve extension and their solutions

From the discussion above, we could naïvely extend the original TPE to the constrained settings
using the split in Eq. (4) and the AF in Eq. (5). More specifically, the naïve extension computes the
AF as follows:

1. Pick the top-dγ|D|e objective value f? in D

2. Split D into D(l)
0 and D(g)

0 by f?, and D into D(l)
i and D(g)

i by c?i for i ∈ {1, . . . , C}

3. Build Parzen estimators p(x|D(l)
i), p(x|D(g)

i) for i ∈ {1, . . . , C}

4. Take the product of density ratios
∏C
i=0 ri(x|D) :=

∏C
i=0 p(x|D

(l)
i)/p(x|D(l)

i) as the AF

Note that c?i is a user-defined threshold and thus c?i is fixed during the optimization. Although this
implementation could be naturally inspired by the original TPE, Operations 1 and 4 could incur
performance degradation under (1) small overlaps in promising regions for the objective and feasible
domains, or (2) vanished constraints. For this reason, we change Operations 1 and 4 into “Pick
the top-dγ|D|e feasible objective value f? in D ” and “Take the product of relative density ratios∏C
i=0 r

rel
i (x|D) :=

∏C
i=0(γ̂i+(1− γ̂i)ri(x|D)−1)−1 as the AF ”, where we define γ̂i := |D(l)

i |/|D|.
Notice that the original TPE by Bergstra et al. (2013) computes γ as d

√
N/4e/N by default and γ̂0

is not necessarily equal to γ after the modification as |D(l)| ≥ d
√
N/4e. Furthermore, the following

corollary, in fact, holds and thus the modified version is valid:

Corollary 1 Under the TPE formulation, ECIf? [x|c?,D] ∝
∏C
i=0 r

rel
i (x|D).

We provide the proof in Appendix C.2. Then we discuss why those modifications mitigate the issues
below. We start from the discussion of “vanished constraints” for more clarity.

B.2.1 Issue I: Vanished constraints

We refer to constraints that are satisfied in almost all configurations as vanished constraints. In other
words, if the i-th constraint ci is a vanished constraint, its quantile is γ̂c?i := γ̂i ' 1. In this case,
ri(x|D) should be a constant value as P(ci ≤ c?i |x,D) = 1 holds for almost all configurations x;
however, P(ci ≤ c?i |x,D) = 1 cannot be exactly obtained with a finite sample D. On the other hand,
when we use the relative density ratio rrel

i (x|D), this issue will be resolved, and it can be written
more formally as follows:

Theorem 1 Given a pair of constraint thresholds c?i , c
?
j and the corresponding quantiles γ̂i, γ̂j(γ̂i ≤

γ̂j), if ri + γ̂i
1−γ̂i r

2
i ≤ rj +

γ̂j
1−γ̂j r

2
j holds, then

∂
∏C
k=0 r

rel
k (x|D)

∂ri
≥
∂
∏C
k=0 r

rel
k (x|D)

∂rj
≥ 0 (10)

holds where the first equality holds if γ̂i = γ̂j and ri = rj and the second one holds iff γ̂j = 1.

The proof is provided in Appendix C.3 and we discuss the intuition using Figure 2 later. Roughly
speaking, Theorem 1 implies that our modified AF puts more priority in the variations of the density
ratios with lower quantiles. Note that as x/(1−x) is a monotonically increasing function in x ∈ [0, 1)
and ri, rj are always non-negative, the condition is always satisfied when ri ≤ rj . The special case
of Theorem 1 is the following corollary:

Corollary 2 Assuming Γ = 1 and the TPE formulation, then
∏C
i=0 r

rel
i (x|D)

affine∝ r0(x|D) holds.

Recall that we previously defined r0(x|D) := p(x|D(l)
0)/p(x|D(g)

0) where we obtain D(l)
0 ,D(g)

0 by
splitting D based on f . The proof is provided in Appendix C.4. Corollary 2 indicates that the AF
of c-TPE is equivalent to that of the original TPE when Γ = 1 and thus our formulation achieves
P(ci ≤ c?i |x,D) = 1 if γ̂i = 0.

9

4

2

0

2

4

Ti
gh

t c
on

st
ra

in
t

Naïve Extension Our method

4 2 0 2 4

4

2

0

2

4

Lo
os

e
co

ns
tra

in
t

Infeasible domain top-10% domain

4 2 0 2 4

 W
orse

B
etter

ECI

Figure 2: Heat maps of the AF in the naïve extension and our c-TPE. For fair comparisons, we use a
fixed set of 200 randomly sampled configurations to compute the AF for all settings. In principle, red
regions have higher AF values and the next configuration is likely to be picked from here.

We empirically present the effect of Theorem 1 in Figure 2. We used the objective function f(x, y) =
(x+ 2)2 + (y+ 2)2 and the constraint c1(x, y) = (x− 1)2 + (y− 1)2 ≤ c?1 ∈ {4, 16} and visualize
the heat maps of the AF using exactly the same observations for each figure. Note that all used
parameters are described in Appendix F. As mentioned earlier, the naïve extension does not decay
the contribution from the objective or the constraint with a large γ̂i and thus it has two peaks, where
we have higher ri(x|D), in both cases. For our algorithm, however, we only have one peak between
the top-10% domain and the feasible domain because our AF decays the contribution from either the
objective or the constraint based on their quantiles γ̂i as mentioned in Theorem 1. More specifically,
for the case of the tight constraint (top), since the feasible domain quantile γ̂1 ' 0.12 is relatively
small compared to the estimated quantile γ̂0 ' 0.3, the peak in the top-10% domain vanishes. Notice
that we discuss why we have the peak not at the center of the feasible domain, but between the
feasible domain and top-10% domain in the next section. For the case of the loose constraint (bottom),
γ̂1 ' 0.50 is much larger than γ̂0 ' 0.02 and this decays the contribution from the center of the
feasible domain where we have the largest r1(x|D). When Γ = 1, rrel

i (x|D) for i ∈ {1, . . . , C}
takes 1 as mentioned in Corollary 2 and thus the AF coincides with that for the single objective
optimization.

B.2.2 Issue II: Small overlaps in promising regions and feasible domains

Since the original TPE algorithm just takes the top-γ quantile observations, it does not guarantee
that D(l) has feasible solutions. For example, Figure 2 (top) does not have an overlap between the
feasible domain and the top-10% domain. That is why if we employ the split algorithm from the
original TPE, we will have two peaks in the AF as seen in Figure 2 (top left). On the other hand, as
constrained optimization typically requires intensive sampling within feasible domains, we modify
the split algorithm to include a certain number of feasible solutions. This leads to the large white
circle that embraces the top-10% domain for our method while the naïve extension has only the small
red circle that embraces the top-10% domain as in Figure 2 (top). As a result, our algorithm yields a
peak at the overlap between the large white circle and the feasible domain.

We will demonstrate how our algorithm and the naïve extension samples configurations using a
toy example. We used the objective function f(x, y) = x2 + y2 and the constraint c1(x, y) =
(x− z)2 + (y − z)2 ≤ c?1 = 3 where z ∈ {0.5, 2.3}. This experiment also follows the parameters
described in Appendix F and both algorithms share the initial configurations. Figure 3 (top) shows a
case of a large overlap and both algorithms search similarly in this case. In contrast to this setting,
the small overlap setting obtained different behaviors. While our algorithm samples intensively
at the boundary of the feasible domain, the naïve extension does not. Furthermore, we can see a

10

4

2

0

2

4

La
rg

e
ov

er
la

p

Naïve Extension Our method

4 2 0 2 4

4

2

0

2

4

Sm
al

l o
ve

rla
p

Infeasible domain top-10% domain Observations

4 2 0 2 4

 B
etter

W
orse

f(x, y)

Figure 3: Scatter plots of observations obtained by the naïvely extended TPE and our c-TPE. Each
figure shows the 2D search space for each task and the observations obtained during optimization are
plotted. Earlier observations are colored black and later observations are colored white. Each figure
has 50 observations.

𝑓

𝑐

Threshold 𝑐⋆

InfeasibleFeasible

𝒟(𝑔)

𝒟(𝑙)

4
3

2

1

5

4

3
2 1

𝑓

𝑐

Threshold 𝑐⋆

InfeasibleFeasible

4
3

2

1

5

4

3
2 1

B
et

te
r

W
or

se

Figure 4: The conceptual visualizations of the split algorithm for the objective (left) and for each
constraint (right). The black circles in the figures represent infeasible solutions and the white circles
represent feasible solutions. The numberings for white and black objects stand for the ranking of the
objective value in feasible and infeasible domains, respectively. The configurations enclosed by the
red rectangle belong to the bad group and those enclosed by the blue rectangle belong to the good
group.

trajectory from the top right of the feasible domain to the boundary between the feasible domain and
the top-10% domain for our algorithm. This happens only to our algorithm although both methods
have some observations in the top right of the feasible domain. Based on Figure 2 (top right), we can
infer that this is because we include some feasible solutions in D(l)

0 and the peak of the AF will be
shifted towards the top-10% domain in our algorithm.

B.3 Further details of the split algorithms

B.3.1 Split algorithm of objective

Figure 4 presents how to split observations into good and bad groups. The left figure shows the
split for the objective. In this example there are N = 9 observations and thus we will include
d
√
N/4e = d

√
9/4e = 1 feasible solution in D(l). For this reason, we first need to find the feasible

observation with the best objective value and the white-circled observation 1 in the figure is the

11

1043 × 103 4 × 103 6 × 103 2 × 104

102

5 × 101

6 × 101

7 × 101

8 × 101

9 × 101

c-TPE
Feasible
Infeasible
Runtime threshold
Oracle

1043 × 103 4 × 103 6 × 103 2 × 104

Vanilla TPE

Runtime

Lo
ss

Figure 5: The visualization of the observations obtained by c-TPE (left) and the vanilla TPE (right)
in the optimization of NAS-Bench-201 on ImageNet16-120 with γtrue

i = 0.1. We include the
observations in the latter half of each optimization to see the pure learning effect of each method
and each optimization was run five times. Runtime threshold is chosen so that γtrue

i = 0.1 will hold
and oracle is the best loss value that can be achieved given a constraint value. The red dots are the
observations that belong to the infeasible domain and the blue dots are the observations that belong
to the feasible domain.

corresponding observation in this example. Then we split observations at the white observation
1 along the horizontal axis and D(l) and D(g) are obtained. The reasons behind this modification
are from the fact that observations with the best objective values are often, especially for tighter
constraints, far from the feasible domain (e.g. the black-circled observations 1 and 3 in Figure 4)
and it guarantees at least one feasible observation to be in the good group unless there is no feasible
observation. For example, Figure 5 visualizes the observations by c-TPE and the vanilla TPE
on ImageNet16-120 of NAS-Bench-201 with γtrue

i = 0.1. As seen in the figure, there are many
observations with better performance than the oracle that are far from the feasible domain in the
result of the vanilla TPE. When c-TPE prioritizes only such observations, c-TPE ends up searching
the infeasible domain. For this reason, we consider the splits by the number of feasible observations.

B.3.2 Split algorithm of each constraint

The right figure of Figure 4 shows the split of each constraint. Note that for simplicity, we show the
1D example and abbreviate ci, c?i ,D

(l)
i ,D(g)

i as c, c?,D(l)
c? ,D

(g)
c? , respectively. As illustrated in the

figure, we take the observations with constraint values less than c? into D(l)
c? and vice versa. When the

observations in the feasible domain do not exist, we only take the observation with the best constraint
value among all the observations into D(l)

c? and the rest into D(g)
c? . This selection increases the priority

of this constraint as mentioned in Theorem 1 and thus raises the probability of yielding feasible
solutions quickly.

C Proofs

C.1 Proof of Proposition 1

Proof 1 Using the definition of p(x|f,D) in Eq. (4), PI is computed as:

P(f ≤ f? | x,D) =

∫ f?

−∞
p(f |x,D)df =

∫ f?

−∞

p(x|f,D)p(f |D)

p(x|D)
df =

p(x|D(l))

p(x|D)

∫ f?

−∞
p(f |D)df.

(11)
Notice that D is split by f?. Since the EI for TPE is computed as:

EIf? [x|D] =
p(x|D(l))

p(x|D)

∫ f?

−∞
(f? − f)p(f |D)df (12)

and both equations have the common part p(x|D(l))/p(x|D). This part cancels out when we take
the ratio. For this reason, the ratio of the two equations is computed as:∫ f?

−∞(f? − f)p(f |D)df∫ f?

−∞ p(f |D)df
= const w.r.t. x, (13)

12

where, since we assume that the support of P(f ≤ fγ |x,D) covers the whole domain X , i.e.
∀x ∈ X ,P(f ≤ f?|x,D) 6= 0 and f is Lebesgue integrable, i.e. the expectation of f exists and∫
|f |µ(dx) <∞, both numerator and denominator always take a positive finite value and thus the

LHS of Eq. (13) takes a finite positive constant value.

C.2 Proof of Corollary 1

Proof 2 Under the TPE formulation, EIf?(x|D) is proportional to rrel
0 (x|D) and EIc?i (x|D) is

proportional to rrel
i (x|D) as shown by Bergstra et al. (2011). Furthermore, since EI and PI are

equivalent in the TPE formulation from Proposition 1, ECI for TPE satisfies the following using
Eq. (9):

ECIf? [x|c?,D] ∝ P(f ≤ f?|x,D)

C∏
i=1

P(ci ≤ c?i |x,D) ∝
C∏
i=0

rrel
i (x|D). (14)

In fact, we can derive the following from the last term of Eq. (11) and
∫ f?

−∞ p(f |D)df = γ:

P(f ≤ f?) =
γp(x|D(l))

γp(x|D(l)) + (1− γ)p(x|D(g))
=

γ

γ + (1− γ)r(x|D)−1
∝ rrel

0 (x|D)(
∵ p(x|D) =

∫ ∞
−∞

p(x|f,D)p(f |D)df = γp(x|D(l)) + (1− γ)p(x|D(g))

)
,

(15)

and thus ECIf? [x|c?,D] =
∏C
i=0 γir

rel
i (x|D) ∝

∏C
i=0 r

rel
i (x|D). This completes the proof.

C.3 Proof of Theorem 1

Proof 3 From Corollary 1, ECIf? [x|c?,D] ∝
∏C
k=0 r

rel
k holds and thus the partial derivative of the

RHS with respect to the density ratio rk(x) for k ∈ {0, . . . , C} is computed as follows:

∂ECIf? [x|c?,D]

∂rk
∝ ∂rrel

k

∂rk

∏
k′ 6=k

rrel
k′

=
∂

∂rk

1

γ̂k + (1− γ̂k)r−1
k

∏
k′ 6=k

rrel
k′

=
1− γ̂k

(γ̂krk + 1− γ̂k)2

∏
k′ 6=k

rrel
k′

=
1− γ̂k
r2
k

rrel
k

C∏
k′=0

rrel
k′ ≥ 0

(∵ ∀k′ ∈ {0, . . . , C}, rk′ , rrel
k′ > 0, 0 ≤ 1− γ̂k < 1).

(16)

For this reason, the LHS takes zero if and only if γ̂k = 1. Using the result, the following holds with a
positive constant number α:

∂ECIf? [x|c?,D]

∂ri
− ∂ECIf? [x|c?,D]

∂rj
= α

(
1− γ̂i
r2
i

rrel
i −

1− γ̂j
r2
j

rrel
j

)

= α

(
1− γ̂i

γ̂ir2
i + (1− γ̂i)ri

− 1− γ̂j
γ̂jr2

j + (1− γ̂j)rj

)

= α

((
ri +

γ̂i
1− γ̂i

r2
i

)−1

−
(
rj +

γ̂j
1− γ̂j

r2
j

)−1
)
.

(17)
Since ri, rj > 0 holds and

ri +
γ̂i

1− γ̂i
r2
i ≥ rj +

γ̂j
1− γ̂j

r2
j , (18)

13

∂ECIf? [x|c?,D]

∂ri
− ∂ECIf? [x|c?,D]

∂rj
= α

((
ri +

γ̂i
1− γ̂i

r2
i

)−1

−
(
rj +

γ̂j
1− γ̂j

r2
j

)−1
)
≥ 0

(19)
holds. When we assume γ̂i = γ̂j and ri = rj , we get the equality. This completes the proof.

Note that since x/(1− x) is a monotonically increasing function in x ∈ [0, 1) and γ̂i ≤ γ̂j from the
assumption,

0 ≤ αi :=
γ̂i

1− γ̂i
≤ αj :=

γ̂j
1− γ̂j

(20)

holds. Furthermore, using ri, rj > 0, if we assume ri < rj , then ri < rj , r
2
i < r2

j , αi < αj and
thus the partial derivative for the i-th constraint is larger; therefore, rj must be smaller than ri for
its contribution to be larger than that from ri. It implies that we will not put more priority on the
constraints with large feasible domains unless those constraints are likely to be violated, which means
the density ratios for those constraints are small.

C.4 Proof of Corollary 2

To prove Corollary 2, we first show two lemmas.

Lemma 1 Given a Γ-feasible domain (Γ > 0) with constraint thresholds of c?i for all i ∈ {1, . . . , C},
each constraint satisfies

∀i ∈ {1, . . . , C}, γi ≥ Γ. (21)

Proof 4 Let the feasible domain for the i-th constraint be X ′i = {x ∈ X |ci ≤ c?i }. Then the
feasible domain is X ′ =

⋂C
i=1 X ′i . Since X ′i is a measurable set by definition and X ′ ⊆ X ′i holds,

Γ/γi = µ(X ′)/µ(X ′i) ≤ 1 holds. Γ is a positive number, so γi ≥ Γ and this completes the proof.

Lemma 2 The domain is (Γ = 1)-feasible domain iff:

∀i ∈ {1, . . . , C}, γi = 1. (22)

Proof 5 Suppose γi < 1 for some i ∈ {1, . . . , C}, we immediately obtain Γ ≤ γi < 1 from Lemma 1
and thus the assumption does not hold. For this reason, γi ≥ 1 for all i ∈ {1, . . . , C} and since
γi ≤ 1 by definition, γi = 1 for all i ∈ {1, . . . , C}.

Using Lemma 2 and Theorem 1, we prove Corollary 2.

Proof 6 From Lemma 2, when Γ = 1, γi = 1 for all i ∈ {1, . . . , C} and we plug γi = 1 into
Theorem 1. Then we obtain:

∀i ∈ {1, . . . , C}, ∂ECIf? [x|c?,D]

∂ri
= 0. (23)

For this reason, ECIf? [x|c?,D] ∝
∏C
i=0 r

rel
i (x|D) ∝ rrel

0 (x|D)
affine∝ r0(x|D) and this completes

the proof.

D Related work and discussion

The ECI was introduced by Gardner et al. (2014) and Gelbart et al. (2014). Furthermore, there are
various extensions of these prior works. For example, Letham et al. (2019) (NEI) is more robust to
the noise caused in experiments and Eriksson and Poloczek (2021) is scalable to high dimensions.
Another technique for constrained BO is entropy search, such as predictive entropy search (Lobato et
al. (2015)) and max-value entropy search (Perrone et al. (2019)). They choose the next configuration
by approximating the expected information gain on the value of the constrained minimizer. Note that

14

we could not compare with those methods except NEI in our experiments because the implementations
are not provided in the papers. While these settings use Gaussian process (GP) regression to compute
the AF, our method uses TPE. The major advantages of TPE over naïve GP-based BOs are more
natural handling of categorical and conditional parameters and easier integration of cheap-to-evaluate
partial observations due to the linear time complexity with respect to |D|. Notice that we provided the
concept of the integration of partial observations and its results, which showed a further acceleration
of c-TPE, in Appendix E. Regarding the first advantage, although there are several BO methods that
handle categorical parameters explicitly (Daxberger et al. (2019); Deshwal et al. (2021); Ru et al.
(2020)), none of them is available as constrained optimization packages 1. Another option is to apply
one-hot encoding (Garrido-Merchán and Hernández-Lobato (2020)) to categorical parameters as
Facebook Ax (Letham et al. (2019)) does; however, this approach did not work well in our settings.
Considering the fact that c-TPE is easily integratable to actively maintained open source softwares
and the results in the experiments, c-TPE is a desirable optimization method.

Evolutionary algorithm (EA) is another domain where constrained optimization has been studied ac-
tively, such as genetic algorithms (e.g. CNSGA-II (Deb et al. (2002))), CMA-ES (Arnold and Hansen
(2012)) or differential evolution (Montes et al. (2006)). Although CMA-ES has demonstrated the best
performance among more than 100 methods for various black-box optimization problems (Loshchilov
et al. (2013)), it does not support categorical parameters. Furthermore, since EAs have many control
parameters, such as mutation rate and population size, it requires meta-tuning. Another downside
of EAs is that it is hard to integrate partial observations because EAs require all the metrics to rank
each configuration at each iteration. In general, BO overcomes these difficulties as discussed in
Appendix E.

E Integration of partial observations

In this section, we discuss the integration of partial observations for BO and we name the integration
“Knowledge augmentation”.

E.1 Knowledge augmentation

When some constraints can be precisely evaluated with a negligible amount of time compared to
others, practitioners typically would like to use Knowledge augmentation (KA). For example, the
network size of deep learning models is trivially computed in seconds while the final validation
performance requires several hours to days. In this case, we can obtain many observations only
for network size and augment the knowledge of network size prior to the optimization so that the
constraint violations will be reduced in the early stage of optimizations.

To validate the effect of KA, all of the additional results in the appendix include the results obtained
using c-TPE with KA. In the experiments, we augmented the knowledge only for network size and
we did not include runtime as a target of KA because although runtime can be roughly estimated
from a 1-epoch training, such estimations are not precise. However, practitioners can include such
rough estimations into partial observations as long as they can accept errors caused by them.

E.2 Algorithm of knowledge augmentation

Algorithm 2 is the pseudocode of c-TPE with KA. We first need to specify a set of indices for cheap
constraints I = {ij}

Cp

j=1 where Cp(< C) is the number of cheap constraints and I must be an element
of the power set of {j}Cj=1. In Lines 4–6, we first collect partial observations Dp. Then we augment
observations in Lines 12–15 if partial observations are available for the corresponding constraint. We
denote the augmented set of observations Daug. When the acquisition function follows Eq. (7), the
predictive models for each constraint are independently trained due to conditional independence. It
enables us to introduce different amounts of observations for each constraint. Since c-TPE follows
Eq. (7), we can employ KA. As discussed in Appendix D, it is hard to apply KA to evolutionary

1 Although we could not include those methods in our experiments as they are not extended to constrained
optimization, we demonstrated that the vanilla TPE was significantly better than some recent BO methods on our
settings as presented in Appendix I. Based on the results, we would expect c-TPE could be better than extensions
of those methods, even if they existed, on our settings.

15

Algorithm 2 c-TPE with knowledge augmentation
1: Ninit, Ns, Np . Control parameters
2: I = {ij}

Cp

j=1 . Indices of cheap constraints
3: Dp ← ∅,D ← ∅
4: for n = 1, . . . , Np do . Collect cheap information
5: Randomly pick x
6: Dp ← Dp ∪ {(x, f(x), ci1(x), . . . , ciCp

(x))}
7: for n = 1, . . . , Ninit do
8: Randomly pick x
9: D ← D ∪ {(x, f(x), c1(x), . . . , cC(x))}

10: while Budget is left do
11: for i = 0, . . . , C do
12: if i ∈ I then
13: Daug = D ∪Dp
14: else
15: Daug = D
16: Split Daug into D(l)

i and D(g)
i , γ̂i ← |D(l)

i |/|Daug|
17: Build p(x|D(l)

i), p(x|D(g)
i)

18: {xj}Ns
j=1 ∼ p(x|D

(l)
i),S ← S ∪ {xj}Ns

j=1

19: Pick xopt ∈ argmaxx∈S
∏C
i=0 r

rel
i (x|D)

20: D ← D ∪ {(xopt, f(xopt), c1(xopt), . . . , cC(xopt))}

10 20 30 40 50 60 70 80 90 100
of config evaluations

0

10

20

30

D
iff

er
en

ce
 in

 th
e

fe
as

ib
le

 ra
tio

 (%
)

0
10
20
30
40
50
60
70
80
90

true
i -quantile

Figure 6: The effect of KA in the optimizations with a constraint for network size. The horizontal
axis shows the number of evaluated configurations in optimizations and the vertical axis shows the
difference in the cumulated ratio of feasible solutions between c-TPE and c-TPE with KA using 200
randomly sampled configurations. The weak-color bands show the standard error of mean values of
50 runs for 10 benchmarks.

algorithms due to their algorithm nature and KA causes a non-negligible bottleneck for GP-based BO
as the number of observations grows.

E.3 Empirical results of knowledge augmentation

In this experiment, we optimized each benchmark with a constraint for network size, and constraints
for runtime and network size. To see the effect, we measured how much KA increases the chance
of drawing feasible solutions and tested the performance difference by the Wilcoxon signed-rank
test on 18 settings (9 benchmarks × 2 constraint choices). According to Figure 6, the tighter the
constraint becomes, the more KA helps to obtain feasible solutions, especially in the early stage of
the optimizations. Additionally, Table 2 shows the statistically significant speedup effects of KA
in γtrue

i = 0.1. Although KA did not exhibit the significant speedup in loose constraint levels, it
did not deteriorate the optimization quality significantly. At the later stage of the optimizations,

16

Table 2: The table shows (Wins/Loses/Ties) of c-TPE with KA against c-TPE for optimizations with
different constraint levels. Bold numbers indicate p < 0.05 of the hypothesis “c-TPE is better than
c-TPE with KA” by the Wilcoxon signed-rank test.

Quantiles γtrue
i = 0.1 γtrue

i = 0.5 γtrue
i = 0.9

of configs 50 100 150 200 50 100 150 200 50 100 150 200

Wins/Loses/Ties 12/5/1 11/5/2 7/5/6 6/6/6 6/12/0 5/11/2 7/6/5 5/5/8 9/9/0 10/6/2 8/5/5 6/9/3

the effect gradually decays as c-TPE becomes competent enough to detect violations. In summary,
KA significantly accelerates optimizations with tight constraints and it does not deteriorate the
optimization quality in general, so it is practically recommended to use KA as much as possible.

F Experiment settings

F.1 The choice of γtrue
i

As mentioned earlier, we chose tabular benchmarks because they enable us to control the quantiles
of each constraint γtrue

i . In practice, we do not have the access to γtrue
i because γtrue

i will not be
identified unless we evaluate all the possible configurations. On the other hand, the quality of solutions
heavily relies on γtrue

i . Since we can calculate the quantile γtrue
i by looking up all the results, we

evaluate each method on tabular benchmarks with various γtrue
i to observe the performance variation

of each method on different difficulties. For example, suppose a tabular dataset has N configurations
{(xn, fn, cn)}Nn=1 and the dataset is sorted so that it satisfies ci,1 ≤ ci,2 ≤ · · · ≤ ci,N where ci,n is
the i-th constraint value in the n-th configuration, then we fix the threshold for the i-th constraint c?i
as ci,bN/10c in the setting of γtrue

i = 0.1.

F.2 Tabular benchmarks

The evaluations were performed on the following 10 benchmarks:
1. HPOlib (slice localization, naval propulsion, parkinsons telemonitoring, protein struc-

ture) (Klein and Hutter (2019)): All with 6 numerical and 3 categorical parameters;
2. NAS-Bench-101 (CIFAR10A, CIFAR10B, CIFAR10C) (Ying et al. (2019)): Each with 26

categorical, 14 categorical, and 22 numerical and 5 categorical parameters, respectively; and
3. NAS-Bench-201 (ImageNet16-120, CIFAR10, CIFAR100) (Dong and Yang (2020)): All

with 6 categorical parameters.
We evaluated each benchmark with 9 different quantiles γtrue

c?i
for each constraint and 3 different

constraint choices. Constraint choices are network size, runtime, or both. The search space for each
benchmark followed Awad et al. (2021).

F.3 Baseline optimizers

As the baseline methods, we chose:
1. Random search (Bergstra and Bengio (2012))
2. CNSGA-II (Deb et al. (2002)) 2 (population size 8)
3. NEI provided in Facebook Ax (Letham et al. (2019)) 3

4. Hypermapper2.0 (HM2) (Nardi et al. (2019)) 4

5. Vanilla TPE (Optimize only loss as if we do not have constraints)
6. Naïve c-TPE (The naïve extension discussed in Section 2)

For all the methods using TPE, we used Ns = 24 and Ninit = 10, which we obtain from the ratio
(5%) of the initial sample size and the number of evaluations, as in the original paper (Bergstra
et al. (2013)). Furthermore, we employed the multivariate kernel and its bandwidth selection

2Implementation: https://github.com/optuna/optuna
3Implementation: https://github.com/facebook/Ax
4Implementation: https://github.com/luinardi/hypermapper

17

https://github.com/optuna/optuna
https://github.com/facebook/Ax
https://github.com/luinardi/hypermapper

10 1

100

101

102

103

Sl
ic

e
Lo

ca
liz

at
io

n

true
i -quantile: 0.1 0.5 0.9

10 2

10 1

100

Pr
ot

ei
n

St
ru

ct
ur

e

10 1

100

101

102

103

104

N
av

al
 P

ro
pu

ls
io

n

0 50 100 150 20010 1

100

101

102

Pa
rk

in
so

ns
 T

el
em

on
ito

rin
g

0 50 100 150 200

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 7: Figures show the performance curves on four benchmarks in HPOlib with a constraint
of network size. We picked γtrue

i = 0.1 (left), 0.5 (center), 0.9 (right). The horizontal axis shows
the number of evaluated configurations in optimizations and the vertical axis shows the absolute
percentage error in each experiment.

used by Falkner et al. (2018). Due to this modification, our vanilla TPE implementation performs
significantly better than Hyperopt (Bergstra et al. (2013)) 5 on our experiment settings and thus
we would like to stress that our TPE may produce better results compared to what we can expect
from prior works such as Daxberger et al. (2019); Deshwal et al. (2021); Eggensperger et al.
(2013); Ru et al. (2020); Turner et al. (2021). For more details, see Appendix I. CNSGA-II is
a genetic algorithm based constrained optimization method, NEI is a GP-based constrained BO
method with EI for noisy observations, and HM2 is a random-forest-based constrained BO method
with ECI, which implements major parts of SMAC (Lindauer et al. (2021)) to perform constrained
optimization. The vanilla TPE is evaluated in order to demonstrate the improvement of c-TPE
from TPE for non-constrained settings. CNSGA-II, NEI, and HM2 followed the default settings in
each package. Note that all experiments were performed over 50 random seeds and we evaluated
200 configurations for each optimization. Additionally, since the optimizations by NEI and HM2
on CIFAR10C failed due to the high-dimensional (22 dimensions) continuous search space for
NEI and an unknown internal issue for HM2, we used the results on 9 benchmarks (other than
CIFAR10C) for the statistical test and the average rank computation. The results on CIFAR10C
by the other methods are available in Appendix G and the source code is available at https:
//github.com/nabenabe0928/constrained-tpe along with complete scripts to reproduce the
experiments, tables and figures.

5Implementation: https://github.com/hyperopt/hyperopt

18

https://github.com/nabenabe0928/constrained-tpe
https://github.com/nabenabe0928/constrained-tpe
https://github.com/hyperopt/hyperopt

100

102

104

Sl
ic

e
Lo

ca
liz

at
io

n

true
i -quantile: 0.1 0.5 0.9

10 2

10 1

100

101

Pr
ot

ei
n

St
ru

ct
ur

e

10 1

100

101

102

103

104

N
av

al
 P

ro
pu

ls
io

n

0 50 100 150 200

100

101

102

Pa
rk

in
so

ns
 T

el
em

on
ito

rin
g

0 50 100 150 200

c-TPE Naïve c-TPE Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 8: Figures show the performance curves on four benchmarks in HPOlib with a constraint of
runtime.

G Additional results for the performance over time

In this section, we show the additional results for Section 3.2. The main goal of those results is to
show how robust c-TPE is over various levels of constraints. Note that we picked only network size
as a cheap constraint and did not pick runtime as discussed in Appendix E and we used Np = 200
throughout all the experiments.

G.1 Results on HPOlib

Figures 7, 8, and 9 show the time evolution of absolute percentage loss of each optimization method
on HPOlib, NAS-Bench-101, and NAS-Bench-201 with the γtrue

i -quantile of 0.1, 0.5, and 0.9 for the
network size constraint.

For tighter constraint settings, c-TPE outperformed other methods and KA accelerated c-TPE in the
early stage. For looser constraint settings, CNSGA-II improves its performance in the early stage of
optimizations although c-TPE still exhibits quicker convergence. On the other hand, the performance
of NEI and HM2 was degraded. As mentioned in Corollary 2, c-TPE approaches the performance of
the vanilla TPE in the settings of γtrue

i = 0.9 and thus such degradation does not happen to c-TPE.
Furthermore, the contributions to the acquisition function from looser constraints decay and KA does
not disrupt the performance of c-TPE thanks to this property.

For multiple constraints settings shown in Figure 9, both CNSGA-II and HM2 show slower conver-
gence compared to single constraint settings. On the other hand, c-TPE shows quicker convergence
in the settings as well.

19

10 1

100

101

102

103

Sl
ic

e
Lo

ca
liz

at
io

n

true
i -quantile: 0.1 0.5 0.9

10 2

10 1

100

Pr
ot

ei
n

St
ru

ct
ur

e

10 1

100

101

102

103

104

N
av

al
 P

ro
pu

ls
io

n

0 50 100 150 20010 1

100

101

102

103

Pa
rk

in
so

ns
 T

el
em

on
ito

rin
g

0 50 100 150 200

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 9: Figures show the performance curves on four benchmarks in HPOlib with constraints of
runtime and network size.

G.2 Results on NAS-Bench-101

Figures 10, 11, and 12 show the time evolution of absolute percentage loss of each optimization
method on HPOlib, NAS-Bench-101, and NAS-Bench-201 with the γtrue

i -quantile of 0.1, 0.5, and
0.9 for the runtime constraint. Note that since we could not run NEI and HM2 on CIFAR10C in our
environment, the results for CIFAR10C do not have the performance curves of NEI and HM2.

The results on NAS-Bench-101 look different from those on HPOlib and NAS-Bench201. For
example, random search outperforms other methods on the tighter constraint settings of CIFAR10C.
This is because high-dimensional search space and tight constraints made the information collection
harder and thus each method could not guide itself although c-TPE still outperformed other methods
on average. If we add more strict constraints such that c-TPE will pick configurations from feasible
domains, we could potentially achieve better results; however, it would lead to poor performance as
the number of evaluations increases and thus this will be a trade-off. Additionally, KA still helps
to yield better configurations quickly except CIFAR10C with runtime and network size constraints.
As seen in the figures, the vanilla TPE exhibited better performance on loose constraint settings and
thanks to the c-TPE’s property discussed in Corollary 2, c-TPE improves its performance in loose
constraint levels.

G.3 Results on NAS-Bench-201

Figures 13, 14, and 15 show the time evolution of absolute percentage loss of each optimization
method on HPOlib, NAS-Bench-101, and NAS-Bench-201 with the γtrue

i -quantile of 0.1, 0.5, and

20

100

3 × 10 1

4 × 10 1

6 × 10 1

C
IF

A
R

10
A

true
i -quantile: 0.1

10 1

6 × 10 2

2 × 10 1

3 × 10 1

0.5

10 1

6 × 10 2

2 × 10 1

3 × 10 10.9

100

3 × 10 1

4 × 10 1

6 × 10 1

C
IF

A
R

10
B

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

0 50 100 150 200

100

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1
9 × 10 1

C
IF

A
R

10
C

0 50 100 150 200
10 1

100

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200
10 1

100

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 10: Figures show the performance curves on three benchmarks in NAS-Bench-101 with a
constraint of network size. Note that since the scale of the results in γtrue

i -quantile of 0.1 is different
from others, we separately scaled for the readability.

10 1

100

C
IF

A
R

10
A

true
i -quantile: 0.1 0.5 0.9

10 1

100

C
IF

A
R

10
B

0 50 100 150 200

10 1

100

C
IF

A
R

10
C

0 50 100 150 200

c-TPE Naïve c-TPE Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 11: Figures show the performance curves on three benchmarks in NAS-Bench-101 with a
constraint of runtime.

21

100

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

2 × 100

C
IF

A
R

10
A

true
i -quantile: 0.1

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

0.5

10 1

6 × 10 2

2 × 10 1

3 × 10 1
4 × 10 1

0.9

100

3 × 10 1

4 × 10 1

6 × 10 1

C
IF

A
R

10
B

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

10 1

6 × 10 2

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

0 50 100 150 200

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

C
IF

A
R

10
C

0 50 100 150 200

10 1

100

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

10 1

100

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 12: Figures show the performance curves on three benchmarks in NAS-Bench-101 with
constraints of runtime and network size. Note that since the scale of the results in γtrue

i -quantile of
0.1 is different from others, we separately scaled for the readability.

10 2

10 1

Im
ag

eN
et

true
i -quantile: 0.1 0.5 0.9

10 2

10 1

C
IF

A
R

10

0 50 100 150 20010 2

10 1

C
IF

A
R

10
0

0 50 100 150 200

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 13: Figures show the performance curves on three benchmarks in NAS-Bench-201 with a
constraint of network size.

22

10 2

10 1

Im
ag

eN
et

true
i -quantile: 0.1 0.5 0.9

10 1

C
IF

A
R

10

0 50 100 150 200

10 2

10 1

C
IF

A
R

10
0

0 50 100 150 200

c-TPE Naïve c-TPE Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 14: Figures show the performance curves on three benchmarks in NAS-Bench-201 with a
constraint of runtime.

10 2

10 1

Im
ag

eN
et

true
i -quantile: 0.1 0.5 0.9

10 1

100

C
IF

A
R

10

0 50 100 150 20010 2

10 1

100

C
IF

A
R

10
0

0 50 100 150 200

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

of config evaluations

A
bs

ol
ut

e
pe

rc
en

ta
ge

 lo
ss

Figure 15: Figures show the performance curves on three benchmarks in NAS-Bench-201 with
constraints of runtime and network size.

23

2

4

6

8

true
i -quantile: 0.1 0.2 0.3

2

4

6

8

0.4 0.5 0.6

0 50 100 150 200
2

4

6

8

0.7

0 50 100 150 200

0.8

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

0.9

of config evaluations

Av
er

ag
e

ra
nk

Figure 16: The average rank of each method over the number of evaluations. We evaluated each
method on nine benchmarks with the network size constraint and each optimization was repeated
over 50 random seeds. Each figure presents the results for γtrue

i of 0.1 to 0.9, respectively.

0.9 for the runtime and network size constraints. Note that the search space of NAS-Bench-201 is
composed of six categorical parameters.

According to the figures, the discrepancy between c-TPE and the vanilla TPE is larger than HPOlib
and NAS-Bench-101 settings. This means that there are many violated configurations that exhibit
good performance. For this reason, the tighter constraint settings on NAS-Bench-201 are harder
than the other benchmarks. However, c-TPE and HM2 showed better performance on tighter
constraint settings although it may lead to cold-starting in c-TPE. Additionally, c-TPE maintained the
performance even over looser constraint settings while CNSGA-II and HM2 did not. This robustness
is also from the property mentioned in Corollary 2.

H Additional results for the average rank over time

Figures 16, 17, and 18 show the average rank of each method over the number of evaluations. Each
figure shows the performance of different constraint settings with 0.1 to 0.9 of γtrue

i .

As the constraint becomes tighter, c-TPE converges quicker in the early stage of the optimizations in
all the settings due to KA. On the other hand, KA does not accelerate the optimizations as constraints
become looser. This is because it is easy to obtain information about feasible domains even by random
samplings. However, KA does not degrade the performance of c-TPE and thus it is recommended to
add KA as much as possible.

Furthermore, it is worth noting that although the performance of HM2 and NEI outperformed the
vanilla TPE in the tighter constraint settings, their performance is degraded as constraints become
looser and they did not exhibit better performance than the vanilla TPE with γtrue

i = 0.9. On the
other hand, c-TPE adapts the optimization based on the estimated γ̂i and thus it exhibited better
performance than the vanilla TPE even in the settings of γtrue

i = 0.9.

24

2

4

6

8

true
i -quantile: 0.1 0.2 0.3

2

4

6

8
0.4 0.5 0.6

0 50 100 150 200
2

4

6

8
0.7

0 50 100 150 200

0.8

c-TPE Naïve c-TPE Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

0.9

of config evaluations

Av
er

ag
e

ra
nk

Figure 17: The average rank of each method over the number of evaluations. We evaluated each
method on nine benchmarks with the runtime constraint and each optimization was repeated over 50
random seeds.

I The performance of the vanilla TPE

As described in Appendix F, since our TPE implementation uses multivariate kernel density esti-
mation, it is different from the Hyperopt implementation that is used in most prior works. For this
reason, we demonstrate that our TPE implementation performs significantly better than Hyperopt and
how our TPE compares with other BO methods in our experiment settings. In this experiment, we
compare our TPE with Hyperopt and the following methods:

1. TuRBO (Eriksson et al. (2019)) 6, and

2. CoCaBO (Ru et al. (2020)) 7.

CoCaBO is a BO method that focuses on the handling of categorical parameters and TuRBO is one
of the strongest BO methods developed recently. Both methods follow the default settings provided
in the examples. Note that as both methods are either not extended to constrained optimization or not
publicly available, we could not include those methods in Section 3.

Figure 19 shows the average rank over time for each method. As seen in the figure, our TPE is better
than Hyperopt. Furthermore, while our TPE is significantly better than other methods in most settings,
Hyperopt is better than only CoCaBO. On the other hand, TuRBO-1 performs better in the early stage
of optimizations although our TPE outperforms TuRBO-1 with statistical significance, and this cold
start in the vanilla TPE might be a trade-off. Notice that since most BO papers test performance on
toy functions and we use the tabular benchmarks, the discussion here does not generalize and the
results only validate why we should use our TPE in our paper.

6Implementation: https://github.com/uber-research/TuRBO
7Implementation: https://github.com/rubinxin/CoCaBO_code

25

https://github.com/uber-research/TuRBO
https://github.com/rubinxin/CoCaBO_code

2

4

6

8

true
i -quantile: 0.1 0.2 0.3

2

4

6

8

0.4 0.5 0.6

0 50 100 150 200
2

4

6

8

0.7

0 50 100 150 200

0.8

c-TPE Naïve c-TPE c-TPE + KA Vanilla TPE Random CNSGA-II NEI HM2

0 50 100 150 200

0.9

of config evaluations

Av
er

ag
e

ra
nk

Figure 18: The average rank of each method over the number of evaluations. We evaluated each
method on nine benchmarks with the runtime and the network size constraints and each optimization
was repeated over 50 random seeds.

0 25 50 75 100 125 150 175 200
of config evaluations

2

3

4

Av
er

ag
e

ra
nk

Hyperopt TuRBO-1 TuRBO-5 CoCaBO TPE

Figure 19: The performance comparison of our TPE implementation against prior works and
Hyperopt implementation. The horizontal axis represents the number of configurations and the
vertical axis represents the average rank of each method over 9 benchmarks that were used in
Section 3.

J Limitations

In this paper, we focus on tabular benchmarks for search spaces with categorical parameters and
with one or two constraints. We chose the tabular benchmarks to enable the stability analysis of the
performance variations depending on constraint levels. Furthermore, such settings are common in
HPO of deep learning. However, practitioners may use c-TPE for other settings, and thus we would
like to discuss the following settings which we did not cover in the paper:

1. Extremely small feasible domain size
2. Many constraints

26

Table 3: In the table, we show the test results of The hypothesis “The other method is better than our
TPE” for the “v.s. our TPE” column and the hypothesis “The other method is better than Hyperopt”
for the “v.s. Hyperopt” column by the Wilcoxon signed-rank test. For example, the “TuRBO-1” row
in the “v.s. our TPE” column says “N/N/W/W”. It means while we cannot draw any conclusion about
the performance difference with 50, 100 evaluations, TuRBO-1 is significantly worse than our TPE
with 150, 200 evaluations in our settings. Note that we chose p < 0.01 as the threshold. Each method
was run over 15 random seeds.

Methods v.s. our TPE v.s. Hyperopt
of configs 50/100/150/200 50/100/150/200

our TPE –/–/–/– N/B/B/B
Hyperopt N/W/W/W –/–/–/–
TuRBO-1 N/N/W/W B/N/N/N
TuRBO-5 W/W/W/W W/N/N/N
CoCaBO W/W/W/W N/W/W/W

3. Parallel computation
4. Synthetic functions

The first setting is an extremely small feasible domain size. For example, when we have Γ = 10−4

for 200 evaluations and use random search, we will not get any feasible solutions with the probability
of (1 − 10−4)200 = 0.9802 · · · ' 98.0%. Such settings are generally hard for most optimizers to
find even one feasible solution.

The second setting is tasks with many constraints. In our experiments, we have the constraints of
runtime and network size. On the other hand, there might be more constraints in other purposes.
Many constraints make the optimization harder because the feasible domain size becomes smaller
as the number of constraints increases due to the curse of dimensionality. More formally, when we
define the feasible domain for the i-th constraint as X ′i = {x ∈ X |ci(x) ≤ c?i }, the feasible domain
size shrinks exponentially unless some feasible domains are identical, i.e. X ′i = X ′j for some pairs
(i, j) ∈ {1, . . . , C} × {1, . . . , C} such that i 6= j. This setting is also generally hard due to the small
feasible domain size.

The third setting is parallel computation. In HPO, since objective functions are usually expensive,
it is often preferred to be able to optimize with less regret. For example, evolutionary algorithms
evaluate a fixed number G of configurations in one generation and thus they optimize the objective
function without any loss compared to the sequential setting up to G parallel processes. Although
TPE (and c-TPE) are applicable to asynchronous settings, we cannot conclude c-TPE works nicely in
parallel settings from our experiments.

The fourth setting is synthetic function. We did not handle synthetic function because we it is hard to
prepare the exact γtrue

i . As mentioned earlier, one of the most important points of our method is the
robustness with respect to various constraint levels. As synthetic functions are designed to be hard in
certain constraint thresholds, it was hard to maintain the difficulties for different γtrue

i and to even
analytically compute γtrue

i . Although we did not perform experiments on synthetic functions, c-TPE
is likely to not perform well on multi-modal functions as c-TPE is a local search method due to the
nature of PI.

We did not test c-TPE on those settings and thus practitioners are encouraged to compare c-TPE with
other methods if their tasks of interest have the characteristics described above.

K Societal impacts

Since there are not many options for black-box constrained optimization and c-TPE is likely to be
integrated into open source software, our method would enable, for example, efficient performance
improvements along with a budget constraint and it potentially reduces the energy consumption
during both HPO and actual operations. On the other hand, when practitioners run HPO, they are
mostly required to design search spaces and to set constraints on their own. As discussed in the paper,
the difficulties of constrained optimizations depend on the feasible domain size Γ, which heavily
relies on the search space design and the choice of constraint thresholds. It might lead to yielding

27

no feasible solutions in the case of too tight constraint values or no convergence in the case of too
high search space dimensions. Then those runs will waste much energy; therefore, we still need to
investigate ways to automate search space design to circumvent such difficulties.

References
J. Aitchison and CG. Aitken. Multivariate binary discrimination by the kernel method. Biometrika,

63(3), 1976.

D. Arnold and N. Hansen. A (1+1)-CMA-ES for constrained optimisation. In Genetic and Evolution-
ary Computation Conference, 2012.

N. Awad, N. Mallik, and F. Hutter. DEHB: Evolutionary hyberband for scalable, robust and efficient
hyperparameter optimization. arXiv:2105.09821, 2021.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(2), 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems, 2011.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In International Conference on Machine
Learning, 2013.

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599,
2010.

E. Daxberger, A. Makarova, M. Turchetta, and A. Krause. Mixed-variable bayesian optimization.
arXiv:1907.01329, 2019.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

A. Deshwal, S. Belakaria, and J. Doppa. Bayesian optimization over hybrid spaces. In International
Conference on Machine Learning, 2021.

X. Dong and Y. Yang. NAS-bench-201: Extending the scope of reproducible neural architecture
search. arXiv:2001.00326, 2020.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards
an empirical foundation for assessing bayesian optimization of hyperparameters. In NeurIPS
workshop on Bayesian Optimization in Theory and Practice, 2013.

D. Eriksson and M. Poloczek. Scalable constrained bayesian optimization. In International Confer-
ence on Artificial Intelligence and Statistics, 2021.

D. Eriksson, M. Pearce, J. Gardner, RD. Turner, and M. Poloczek. Scalable global optimization via
local bayesian optimization. In Advances in Neural Information Processing Systems, 2019.

S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter optimization at scale.
In International Conference on Machine Learning, 2018.

J. Gardner, M. Kusner, ZE. Xu, K. Weinberger, and J. Cunningham. Bayesian optimization with
inequality constraints. In International Conference on Machine Learning, 2014.

R. Garnett. Bayesian Optimization. Cambridge University Press, 2022.

EC. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and integer-valued
variables in bayesian optimization with gaussian processes. Neurocomputing, 380, 2020.

M. Gelbart, J. Snoek, and R. Adams. Bayesian optimization with unknown constraints.
arXiv:1403.5607, 2014.

28

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13(4):455–492, 1998.

A. Klein and F. Hutter. Tabular benchmarks for joint architecture and hyperparameter optimization.
arXiv:1905.04970, 2019.

B. Letham, B. Karrer, G. Ottoni, and E. Bakshy. Constrained bayesian optimization with noisy
experiments. Bayesian Analysis, 14(2):495–519, 2019.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, R. Sass, and
F. Hutter. Smac3: A versatile bayesian optimization package for hyperparameter optimization.
arXiv:2109.09831, 2021.

JH. Lobato, M. Gelbart, M. Hoffman, R. Adams, and Z. Ghahramani. Predictive entropy search
for bayesian optimization with unknown constraints. In International Conference on Machine
Learning, 2015.

I. Loshchilov, M. Schoenauer, and M. Sebag. Bi-population CMA-ES agorithms with surrogate
models and line searches. In Genetic and Evolutionary Computation Conference, 2013.

EM. Montes, J. Velázquez-Reyes, and CA. Coello. Modified differential evolution for constrained
optimization. In International Conference on Evolutionary Computation, 2006.

L. Nardi, D. Koeplinger, and K. Olukotun. Practical design space exploration. In International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
pages 347–358. IEEE, 2019.

V. Perrone, I. Shcherbatyi, R. Jenatton, C. Archambeau, and M. Seeger. Constrained bayesian
optimization with max-value entropy search. arXiv:1910.07003, 2019.

B. Ru, A. Alvi, Vu V. Nguyen, M. Osborne, and S. Roberts. Bayesian optimisation over multiple
continuous and categorical inputs. In International Conference on Machine Learning, 2020.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop:
A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian
optimization is superior to random search for machine learning hyperparameter tuning: Analysis
of the black-box optimization challenge 2020. In NeurIPS 2020 Competition and Demonstration
Track, 2021.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International Conference on Machine Learning, 2019.

29

	Introduction
	Constrained TPE (c-TPE)
	The acquisition function
	Algorithm modification details from a naïve combination

	Experiments
	Setup
	Results

	Conclusion
	Background
	Preliminaries
	Assumptions
	Bayesian optimization (BO)
	Tree-structured Parzen estimator (TPE)
	BO with unknown constraints

	More details about constrained TPE (c-TPE)
	The acquisition function
	Two pitfalls in a naïve extension and their solutions
	Issue I: Vanished constraints
	Issue II: Small overlaps in promising regions and feasible domains

	Further details of the split algorithms
	Split algorithm of objective
	Split algorithm of each constraint

	Proofs
	Proof of Proposition 1
	Proof of Corollary 1
	Proof of Theorem 1
	Proof of Corollary 2

	Related work and discussion
	Integration of partial observations
	Knowledge augmentation
	Algorithm of knowledge augmentation
	Empirical results of knowledge augmentation

	Experiment settings
	The choice of itrue
	Tabular benchmarks
	Baseline optimizers

	Additional results for the performance over time
	Results on HPOlib
	Results on NAS-Bench-101
	Results on NAS-Bench-201

	Additional results for the average rank over time
	The performance of the vanilla TPE
	Limitations
	Societal impacts

