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Challenges and Project Goals

Public Health Challenges:

- There are over 2,000 opioid-related fatal overdoses each year in
Massachusetts (more than traffic fatalities)

- There are limited resources for intervention, so model must help target
these resources

Modeling Challenges:
- Death data is count-valued and very sparse with many exact zeroes

How we overcome these challenges:

- We used the Zero-Inflated Gaussian Process (ZIGP) model to flexibly
capture the spatiotemporal trends in the data

- We introduce a Zero-Inflated Poisson likelihood better suited to model
count data

- We develop a metric, %-Best Possible Reach which captures the limited-
resource nature of the problem

Model: Zero-Inflated Gaussian Process with
Poisson Likelihood

Model. For real-valued observation y with latent signal f and non-sparsity level g:
F T
flg ~ N(01.n. K}y 1.n © P(g)P(g)")
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where ¢ is the probit-link function.
The Zero-Inflated Gaussian Process [1], uses a Normal likelihood:

Gn|fn ~ N(fn,02), forne1,...N
This is inappropriate count data, so we propose a Zero-Inflated Poisson Likelihood

. _ [ ®(ga)PoiPMF(O|r(f,)) + (1 — ®(g,)) k=0
P(yn = Klfn, gn) = {CID(g”)PoiPMF(k\r(fn)) kel,2,...

For scalability, we use the inducing point augmentation [2], introducing M random
variables A" and another M variables 4° representing latent function and non-sparsity
level outputs.

Following the standard variational approach, we use approximate distributions over
the inducing point locations:

¢(h®)=N(m%, %), g(hF)=N(mF,SsF),

The evidence lower bound optimization objective becomes:
N :
L(#,v) = ]Eqa.p(f,g) I:Zn=1 logp(yﬂ.lfm In )] + KL(QV(hG: hF)HPB(hGa hF))

‘We can use ADVI [3] to obtain gradients using minibatches from our data

Z1GP with Zero-Inflated Poisson
Likelihood
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Demonstration on toy data. For real-valued observation y with latent signal f and
non-sparsity level g, we plot the latent kernels, probit support kernels, and the
predictive function. We observe that for ¢(g) close to 0, the model can learn exact 0,
and it learns a count-value otherwise.
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Performance Metrics for 2019 in MA

method %BPR

allzero 16.0

lastyear 26.4
GLM-+Poisson 252
RF+Poisson 25.1
ZIGP+Normal 34.5
ZIGP+ZIPoisson 31.9

The Zero-Inflated Gaussian Process models out-perform all baselines, but
surprisingly the Normal likelihood works best, despite not being
appropriate for count-valued data.

%-Best Possible Reach

We wish to assess prediction accuracy by using a metric which reflects the need to
spend limited intervention resources on the K highest need census tracts. This metric
evaluates the number of deaths in the top K predicted tracts divided by the number of
deaths in the actual K worst tracts.

A model that perfectly predicts the K most severe census tracts will have a %BPR of
100%, while a model that predicts no deaths will have a %BPR of 0%.

# deaths in the predicted K tracts
%BPR = x 100%
# deaths in best-possible K tracts
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Results for Massachusetts

Opioid-related Overdose deaths, 2019

0
Total Opioid-related overdose deaths for Massachusetts in 2019 at the census tract
level. We observe many exact zeros, and heterogeneity in the geographic distribution
of deaths
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Prediction errors for a naive model using the deaths during this quarter last year as the
prediction for 2019 Q1 in Metro Boston, left

Errors for the best-performing model, the ZIGP with Normal likelihood in 2019 Q1,
right.

We observe that the ZIGP model lacks the dark blue hues indicating too-high predicted
deaths and dark reds hues indicating too-low predictions




