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Abstract

Recently, zero-inflated Gaussian processes (GPs) have been proposed as probabilis-
tic machine learning models for observed spatio-temporal data that contain many
close-to-zero entries. In this work, we extend zero-inflated GPs to sparse count data
via the zero-inflated Poisson likelihood. This change no longer admits a closed-
form computation of the training objective, so we use automatic differentiation
variational inference to perform approximate posterior estimation. Our motivating
application is the prediction of the number of opioid-related overdose deaths that
will occur in the next 3 months in each of 1620 census tracts across the state of
Massachusetts, given historical decedent data and socio-economic covariates. We
find zero-inflated GPs can prioritize regions in need of near-term public health
interventions better than alternative models at finer spatial and temporal resolutions
than most prior efforts. Surprisingly, we find that this model is successful even
when using Normal likelihoods instead of the zero-inflated Poisson.

1 Introduction
Across many applications of spatiotemporal modeling, an essential feature of the observed data is the
fact that many observations are nearly or exactly zero. Examples include measurements of rainfall,
incidents of disease (Torabi, 2017), or counts of animals in ecological surveys (Ancelet et al., 2010).
Many “zero-inflated” models over the years have sought to capture the excess of zeros seen is such
data (Lambert, 1992; Agarwal et al., 2002; Liu and Blei, 2017).

Notable recent work by Hegde et al. (2018) proposed the zero-inflated Gaussian process (ZIGP)
model to provide a flexible Bayesian nonparametric model for real values that may often be quite
close to zero. By taking advantage of the Gaussian distribution and its synergy with the probit
link function, that model enjoyed closed-form computation of its training objective. However, as
a generative model, the ZIGP is suitable only for real-valued observations that contain regions of
close-to-zero values, not exact zeros. For applications with integer-valued observations with exact
zeros, such as count data, other likelihoods are required. In this work, we show how to elegantly
combine the zero-inflated GP with a zero-inflated-Poisson likelihood. While the resulting model is
non-conjugate, we demonstrate how to fit our model at scale with automatic differentiation variational
inference (Kucukelbir et al., 2017).

Our motivating application is addressing the public health emergency caused by opioid-related
overdose deaths. Overdose has recently become the leading cause of accidental death in the United
States, ahead of vehicle crashes and gun violence (Kaafarani et al., 2017). In this paper, we focus on
the state of Massachusetts, where opioid-related overdose deaths have increased six-fold over the
past two decades, with more than 2,000 per year since 2016 (MA Dept of Public Health, 2022).

We develop a zero-inflated GP model that can learn from historical death records to predict near-term
risk of future overdose deaths in all 1620 census tracts across the state of Massachusetts. Our
analysis pursues finer spatial resolution than previous analyses of overdose events at the scale of
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counties (Acharya et al., 2022; Sumetsky, 2017) or zip-codes (Herlands et al., 2018). Notable efforts
have pursued neighborhood-level modeling of opioid incidents (Ertugrul et al., 2019), but focus
on less than 60 neighborhoods. We develop performance measures tailored to assess how models
could inform targeted public health interventions under limited resources, a strategy concurrently
being pursued in a state-level randomized-trial (Marshall et al., 2022). We show that ZIGPs produce
top-100 rankings of locations where spikes appear imminent better than alternatives, with surprisingly
good performance using a Normal likelihood even though it is not specialized to count data.

2 Model
ZIGP with Normal likelihood. As proposed by Hegde et al. (2018), the zero-inflated GP is a
regression model for any provided set of N inputs, indexed by n. Let xn ∈ RD denote the (assumed
known) feature vector observed at each input. The model defines three random variables at each input.
First, there is a real-valued observation ỹn ∈ R. Then, there are two latent function values, which
we’ll call the nonsparsity-level gn ∈ R and the signal fn ∈ R. The model assumes the following
generative process defining the joint distribution pθ(g, f ,y) over N -dimensional vectors g, f ,y,

f |g ∼ N (01:N ,KF
1:N,1:N ⊙ Φ(g)Φ(g)T ), g ∼ N (01:N ,KG

1:N,1:N ),

ỹn|fn ∼ N (fn, σ
2), for n ∈ 1, . . . N. (1)

Here, N denotes a multivariate normal distribution, ⊙ denotes elementwise multiplication, Φ(·)
denotes the elementwise probit function (the CDF of the standard univariate Normal), and KG,KF

denote matrices of suitable size built from chosen kernel functions kG(xi,xj ; γ
G), kF (xi,xj ; γ

F )
that map pairs of feature vectors to scalars. Parameters, compactly denoted via vector θ, include the
kernel hyperparameters γG, γF and the likelihood standard deviation σ > 0.

ZIGP with Zero-inflated Poisson likelihood. We adapt the above to a new model appropriate for
generating count values yn ∈ {0, 1, . . .} instead of real values ỹn. We can use the same generative
model for f and g, but the likelihood becomes

p(yn = k|fn, gn) =
{
Φ(gn)PoiPMF(0|r(fn)) + (1− Φ(gn)) k = 0

Φ(gn)PoiPMF(k|r(fn)) k ∈ 1, 2, . . .
(2)

This form matches the standard zero-inflated Poisson (Lambert, 1992), but with GP-generated values
gn and fn controlling its parameters. With probability 1 − Φ(gn), the count is generated from a
pure-zero process, so gn values far below zero imply a zero-valued count yn. Alternatively, when
gn is far above zero, we generate count yn from a Poisson, with positive mean determined by a
monotonic transformation r(·) of real-value fn. We set r to the softplus in all experiments. The roles
of f and g are intuitively illustrated in App. Fig. 2.

2.1 Automatic Differentiation Variational Inference
We are interested in estimating the posterior p(f ,g|y) for the function values at the N training
inputs and using it to make predictions of new observations at input x∗ via the posterior predictive
p(y∗|y). We’ll first follow the inducing points strategy for scalable GPs (Hensman et al., 2013, 2015),
introducing M random variables hF representing signal function outputs and another M random
variables hG for nonsparsity function outputs, each with corresponding input locations zF , zG. The
model’s expanded joint distribution is now defined by factors

p(hG) = N (0,KG
1:M,1:M ), p(g|hG)= N

(
AGhG, BG

1:N,1:N

)
, (3)

p(hF ) = N (0,KF
1:M,1:M ), p(f |g,hF )= N

(
Φ(g)⊙AFhF ,Φ(g)Φ(g)T ⊙BF

1:N,1:N

)
. (4)

where suitably-sized matrices AG, BG and AF , BF are defined in terms of kernel matrices KF ,KG

(see supplement). Parameters θ now include the input features zG, zF of the M inducing points.

To apply variational inference (Blei et al., 2017), we assume an approximate posterior q with factors
q(hG,hF ,g, f) = q(hG)q(hF )p(g|hG)p(f |g,hF ), q(hG)=N (mG, SG), q(hF )=N (mF , SF ),

where the colored factors indicate that we reuse the same density as the generative model. Beyond θ,
the additional free parameters of q are denoted compactly as ν = {mG, SG,mF , SF }.

Our evidence lower bound optimization objective (ELBO), L(θ, ν) ≤ log p(y; θ), becomes

L(θ, ν) = Eqθ,ν(f ,g)

[∑N
n=1 log p(yn|fn, gn)

]
︸ ︷︷ ︸

L1

+KL(qν(hG,hF )||pθ(hG,hF ))︸ ︷︷ ︸
L2

(5)
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The first term is the challenging one. The second term, L2 is a KL divergence between Gaussian
densities with known mean and covariances. Its value and its gradients with respect to θ and ν can be
computed exactly using well-known formulas (Hegde et al., 2018). We omit the ELBO’s final term
KL(q(f ,g|h)||p(f ,g|h)) because it cancels to zero due to setting q(f ,g|h) equal to p(f ,g|h).
We’d now like to compute the first term and its gradients as a function of model parameters θ and
variational parameters ν. Following the ADVI recipe (Kucukelbir et al., 2017), we can use a Monte
Carlo estimator from minibatches of size B to approximate L1:

L1(θ, ν) ≈
N

B

∑
n∈B

1

S

S∑
s=1

log p(yn|fn(ws
n, u

s
n; θ, ν), gn(u

s
n; θ, ν)), us

n, w
s
n ∼ N (0, I) (6)

Here, the deterministic functions gn(·), fn(·) produce samples of scalars gn, fn from per-example
marginal posteriors q(gn) and q(fn|gn). Both these q factors are Normally-distributed, and thus
samples can be obtained by transforming mean-zero, unit-variance normal samples u,w via the
reparameterization trick (Rezende et al., 2014) that underlies ADVI. See supplement for details.
Gradients ∇θL1,∇νL1 follow by applying automatic differentiation to Eq. (6).

3 Application: Preventing Fatal Overdoses involving Opioids
3.1 Data and Task Description # deaths sparsity (%)

2000 356 94.7
2010 524 92.3
2019 1837 76.4

Table 1: Dataset summary. Fatal overdose
deaths involving opioids in MA, for select
years from 2000-2019. Sparsity is reported
across the product of all 1620 census tracts
and all four quarters per year.

Data. We obtained death certificate data from the Mas-
sachusetts Registry of Vital Records and Statistics for
opioid-involved overdose deaths between 2001 and 2019.
These deaths were defined as unintentional, intentional,
and undetermined drug poisonings containing an opioid
code as an underlying cause-of-death. In Massachusetts,
death certificate data are publicly available upon request
and may be provided to researchers at the individual level,
allowing us obtain a residential street address for each decedent. We used only decedant data, so our
institution’s IRB gave the project a Not Human Research Determination.

We divided the state into the S = 1620 spatial tracts used in the 2020 U.S. census. Each tract by
design contains typically 4000 people (range 1200-8000) (US Census Bureau, 2022). We divided
time into quarters (3 month periods, beginning Jan-Mar.). We then computed the observed number of
death events ys,t at time unit t for individuals residing in spatial tract s, using open tools (Freeman,
2022) that call the US Census Geocoding API to identify the correct census tract given a residential
street address. Tab. 1 summarizes our dataset’s total death events and per-tract sparsity over the years.

Prediction task. Given all historical count data y1:S,1:T for a time period from t ∈ {1, . . . T}, we
wish to predict the counts in the next time period y1:S,T+1. Concretely, we used each quarter of 2019
as a heldout test set, keeping all previous quarters as the training set in each case (e.g. T = 72 for
Q1 2019). These granularity levels were deliberately chosen to formulate an actionable prediction
task where a model could identify high-risk tracts and enable interventions to reduce future harm.
Example targeted public health interventions include overdose education and naloxone distribution
programs or increased access to effective medications for opioid use disorder.

Covariates. Basic covariates include a vector ℓs giving the numerical latitude and longitude
location of geocentroid of each census tract, and the scalar start time τt of each period (mea-
sured in quarters since 2000). Additionally, for each census tract s at time t we have a vector
xs,t = [xst1, xst2, . . . xst5] representing its percentile rankings (higher is more “vulnerable”) across
four thematic dimensions – socioeconomic, age-related demographics, minority status, and housing –
as well as a 5th dimension representing a composite total vulnerability. These features are from the
five published of the Social Vulnerability Index (CDC ATSDR, 2018) between 2000 and 2018.

3.2 Results and Analysis
Performance Metrics. First, we assess prediction via mean absolute error, the difference between
predicted counts ŷ1:S,T+1 to actual counts y1:S,T+1 for test period T + 1. Second, we assess
Percentage of Best-Possible Reach using the top-K tracts, %BPR(K), a metric devised in conversation
with public health experts to reflect the applied need to spend limited intervention resources on the K
highest-priority regions identified by the model. We compute this metric as:

%BPR(K) = (
∑K

k=1 ytop_tract(k,ŷ:,T+1),T+1)/(
∑K

k=1 ytop_tract(k,y:,T+1),T+1) · 100% (7)
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method MAE %BPR K=100

allzero 0.28 16.0
lastyear 0.42 26.4

GLM+Poisson 0.44 25.2
RF+Poisson 0.41 25.1

ZIGP+Normal 0.39 34.5
ZIGP+ZIPoisson 0.34 31.9

Table 2: Comparison of methods for pre-
dicting fatal overdose counts (per census
tract, per quarter) in MA in 2019. We
report mean absolute error (MAE, lower is
better) and percentage of best-possible reach
(%BPR, higher is better, see Eq. (7)), aver-
aged across the 4 quarters of 2019. BPR as-
sesses the public health intervention potential
of each model’s ability to identify K=100
tracts with highest predicted deaths.

Figure 1: Visualization of model errors at the census tract level
for 2019 Q1 in metro Boston. On the left are the residuals from
predicting using the strongest baseline: last year’s mortality. On
the right are the residuals from the ZIGP with a Normal likelihood.
Darker colors meaning larger errors. Blue hue indicates tracts
where the model predicted too-high mortality; red hue indicates
too-low.

where function top_tract(k,a) produces an index corresponding to the k-th largest element in provided
array a of size S. %BPR’s numerator counts all truly at-risk individuals that could be reached by an
intervention deployed for the top-K spatial tracts recommended by the model. %BPR’s denominator
gives the maximum possible count of all size-K sets, assuming perfect knowledge of the future data.
The produced BPR value will be between 0 and 100%; larger values mean better top-K rankings. In
the case of ties for the numerator, we average over all indices corresponding to the k-th best value.

Results. Tab. 2 compares several variants of Gaussian Process, including our proposed ZIGP with
ZIP likelihood, with other baselines (described in App. C). Here we see the difficulty of this problem
in the strength of the naive baselines. Simply guessing 0 deaths produces the model with the lowest
MAE. Here the lastyear model represents an intuitive baseline; it assumes that the locations with the
highest mortality one year ago will have the highest mortality today. More complex models such as
the GLM and random forest cannot outperform this method. Here we see the success of the ZIGP
model with a Normal likelihood, in that the tracts it predicts will have the highest mortality have the
highest %BPR of any method.

To further gain understanding, we provide a detailed qualitative view of the model’s predictions
across the city of Boston in Fig. 1. The red census tracts in the east show that both models failed
to anticipate a rise in deaths. In the lastyear model, we see many dark blue tracts where the model
predicted too-high mortality. We see that the flexible nature of the ZIGP allowed it to avoid these
errors, while still performing well at identifying high-mortality tracts by the %BPR metric.

4 Discussion
Opioid-related overdose deaths represent a compelling public health problem in need of solutions.
Typical public health responses have been reactive, based on surveillance data from previous years.
While helpful, risk landscapes and distributions of opioid-related overdoses can change rapidly across
geographies and time, based on locally-evolving risk factors (e.g., contaminated drug source, access
to treatment). Our modeling approach allows for much-needed fine granularity across an entire U.S.
state. Local level prediction of risk is vital to reducing the impact of the opioid overdose crisis - a
limitation that is common in other prediction models which are at the level of zip codes or cities.

Predictive approaches are of course no panacea, but we believe careful modeling that pinpoints future
locations of impending overdose spikes can inform targeting of preemptive public health interventions.
The model developed in this study can identify and inform policymakers and planners to channel
limited resources to areas that have high risk of opioid overdose. The availability of medication for
opioid use disorders such as methadone, buprenorphine, and naltrexone along with addition ancillary
services can help reduce the risk of opioid overdose. Improving the availability of naloxone, an
overdose rescue medication, and fentanyl testing strips can further provide additional protective
measures among individuals at risk. These protective measures work best when directed at high-risk
locations at the right time and with tailored responses, thereby providing the necessary tools to people
who use drugs to reduce their risk of opioid-related overdose. We hope this work is a first step toward
using scalable spatio-temporal machine learning to reduce harm among vulnerable populations.
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Figure 2: Diagram of learned posteriors on y, f , and g for Zero-inflated Gaussian Process with Zero-
inflated Poisson likelihood on toy dataset. Large negative values of the nonsparsity function g lead to regions
of all-zero y. Otherwise, if g is near zero or positive, the signal function f drives the mean of a Poisson density
on y. This toy dataset is adapted from one in Hegde et al. (2018) originally used for real-valued data; this dataset
has count observations for y (top panel).

A Expanded Model Details

Toy data illustration of the ZIGP-ZIPoisson. In Fig. 2, we provide an intuitive illustration of how
latent random variables f, g are used to model observed count data y in our proposed zero-inflated
Gaussian process with zero-inflated Poisson likelihood model.

Definition of expanded model with inducing points. Our inducing point expansion of the ZIGP-ZIP
model in Eq. (3) includes as random variables the function evaluations hG,hF at the M inducing
points.

Here, we define the matrices A,B used in that model

AG = KG
N,M

(
KG

M,M

)−1
, BG = KG

N,N −KG
N,M

(
KG

M,M

)−1
KG

M,N (8)

AF = KF
N,M

(
KF

M,M

)−1
, BF = KF

N,N −KF
N,M

(
KF

M,M

)−1
KF

M,N (9)

where for function f , KF
N,N represents the N × N kernel matrix for all pairs in the training set,

KF
M,M is the kernel matrix for all pairs in the inducing set, and KF

M,N is the rectangular kernel matrix
where the value in entry i, j represents the kernel at the i-th inducing point and the j-th training
points. KG matrices are defined similarly for function g using its corresponding kernel function.

B Variational Methods
We’ve assumed a variational density family of the form

q(hG, hF , g, f) = q(hG;mG, SG)q(hF ;mF , SF )p(g|hG)p(f |g, hF ) (10)
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Following Hegde et al. (2018), we can apply the sum rule to this joint distribution to obtain the
marginals that are also Normally-distributed

q(g) = N (µG,ΣG), (11)

q(f |g) = N (diag(Φ(g))µF ,Φ(g)Φ(g)T ⊙ ΣF ), (12)

ΣG = KG
N,N +AG(SG −KG

M,M )AG,T , µG = AGmG, (13)

ΣF = KF
N,N +AF (SF −KF

M,M )AF,T , µF = AFmF , (14)
Looking at specific training point n, which is all that is needed to evaluate the expected likelihood of
yn in Eq. (6), we thus have

q(gn) = N (cGn , κ
2
n), cGn = AG

n,:m
G, κ2

n = KG
n,n +AG

n,:(S
G −KG

1:M,1:M )AG,T
:,n

q(fn|gn) = N (Φ(gn)c
F
n ,Φ(gn)

2τ2n), cFn = AF
n,:m

F , τ2n = KF
n,n +AF

n,:(S
F −KF

1:M,1:M )AF,T
:,n

using the above, we can reparameterize to draw samples from q(gn) and q(fn|gn) via
gn(u) = κnu+ cGn , u ∼ N (0, 1) (15)

fn(u,w) = Φ(gn(u))τnw +Φ(gn(u))c
F
n , w ∼ N (0, 1) (16)

C Applied Methods for Fatal Overdose Prediction
Here we provide more detail about the methods we compare

C.1 Simple baselines : no training required
We consider several very simple methods that involve no modeling whatsoever.

1. zero : Always guess zero: ŷs,T+1 = 0

2. median : Guess each spatial tract’s training set median: ŷs,T+1 = median(ys,1:T )

3. lastyear : Guess each spatial tract’s previous year value: ŷs,T+1 = ys,T−3

These methods require no parameter fitting or hyperparameters whatsoever.

C.2 ML baselines
We further consider some baseline machine learning methods using implementations from sklearn.

1. GLM+Poisson : Generalized linear model with Poisson likelihood
2. RF+P : Random forest with Poisson

For the GLM with Poisson likelihood we used a grid search to select a regularization penalty of 1.0
and optimized using the L-BFGS solver until the gradients stopped changing with a tolerance of 1e-4.

For the Random forest with a Poisson loss, we conducted a grid search over maximum number
of leaves in a tree, maximum depth, learning rate, and L2 regularization strength. We selected a
maximum leaf count of 10, no maximum tree depth, a learning rate of 0.01 and no L2 regularization.
The model was optimized using the L-BFGS solver until the gradients stopped changing with a
tolerance of 1e-4.

C.3 Gaussian Process Methods
1. GP+N : Standard GP (no zero inflation) with normal likelihood
2. ZIGP+N : Zero-inflated GP with normal likelihood and exact inference Hegde et al. (2018)
3. ZIGP+ZIP : Proposed ZIGP with zero-inflated Poisson likelihood

For all GP methods, to define covariances we consider several kernels of squared-exponential form,
including

spatial kS(s, t, s
′, t′) = αS exp

(
−1

2

||ℓs − ℓs||
λS

)
(17)

temporal kT(s, t, s
′, t′) = αT exp

(
−1

2

(τt − τt′)
2

λT

)
(18)

demographics/economics kD(s, t, s
′, t′) = αD exp

(
−1

2

||xs,t − xs′,t′ ||
λD

)
(19)
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