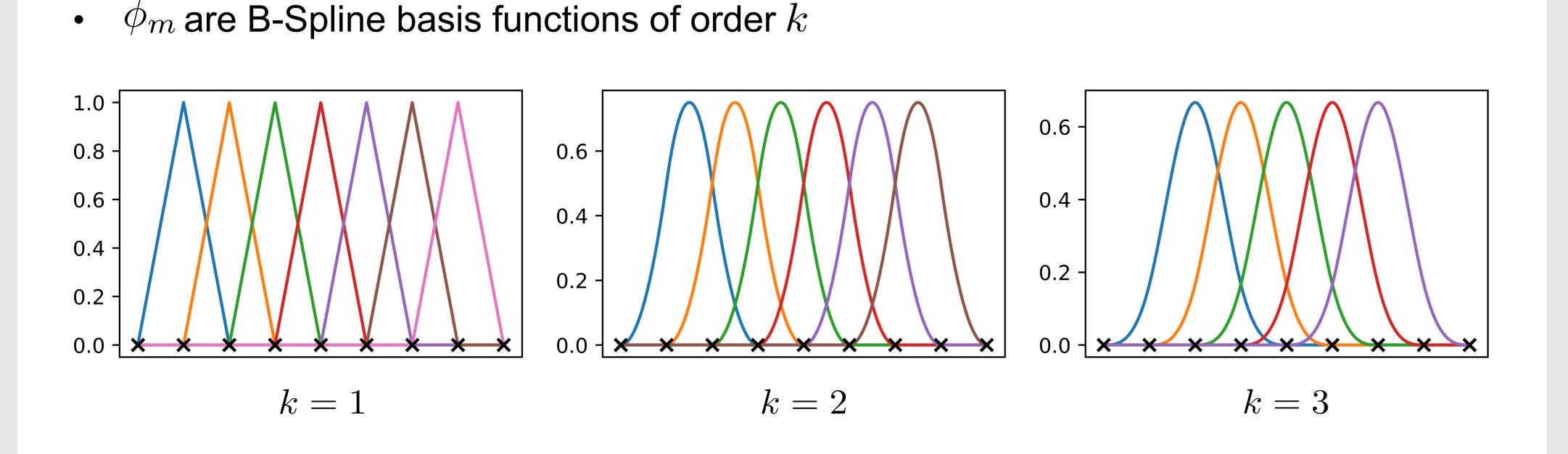
# **Actually Sparse Variational Gaussian Processes**

### Jake Cunningham, So Takao, Mark van der Wilk, Marc Deisenroth

University College London, Imperial College London<sup>†</sup>

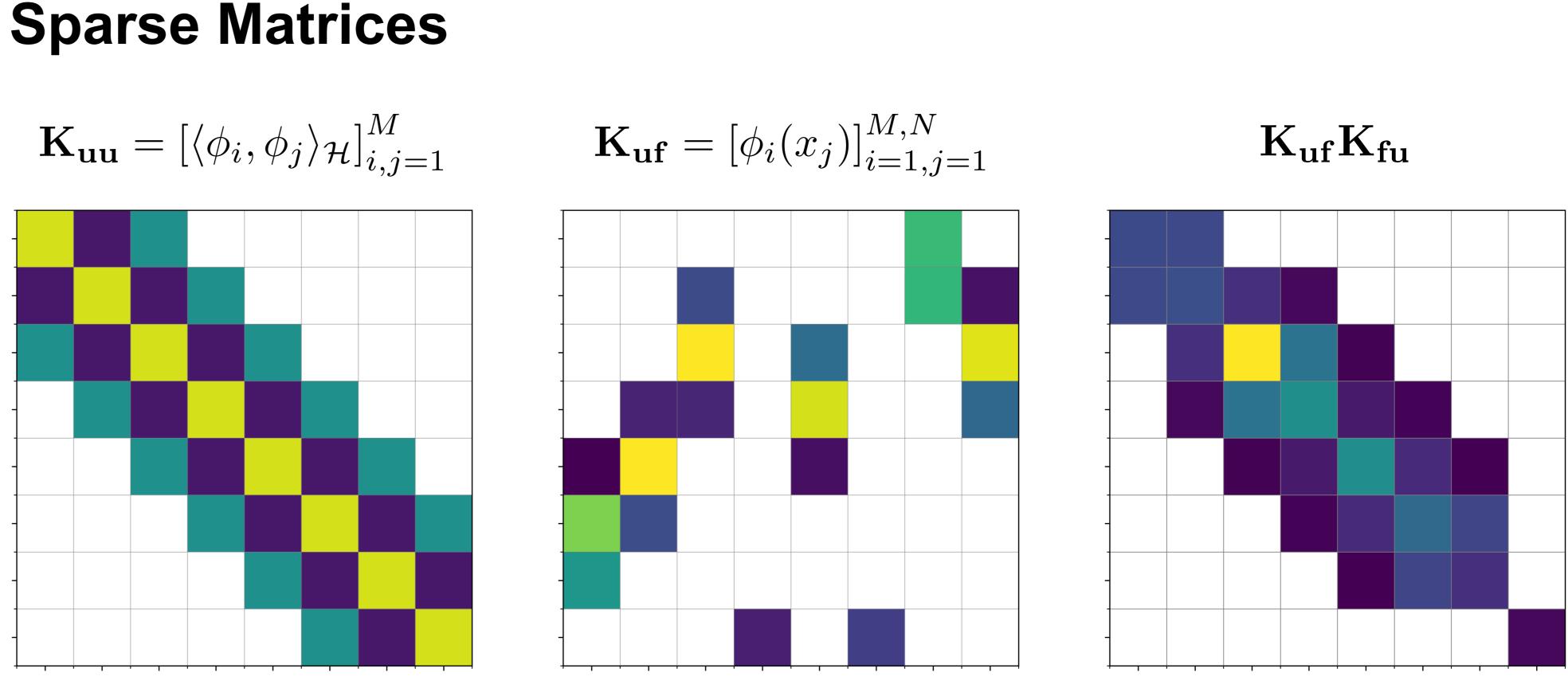
### Contribution


- In sparse variational GP inference, precomputation (as done in VFF/VISH) is faster than **stochastic optimization** in SVGP
- However, computing the ELBO with VFF requires the Cholesky factor of the dense matrix  $(\mathbf{K}_{uu} - \sigma^{-2} \mathbf{K}_{uf} \mathbf{K}_{fu})$
- We overcome this by using **B-spline features** to make this matrix **sparse**, reducing the computational complexity to linear in the number of inducing points

| Algorithm                                                                                                                        | Pre-<br>computation                                                                                                                      | Computational complexity                                                                                                        | Storage                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGPR (Titsias, 2009)<br>SVGP (Hensman et al, 2013)<br>VFF (Hensman et al, 2017)<br>VISH (Dutordoir et al, 2020)<br>AS-VGP (Ours) | $egin{aligned} & oldsymbol{\lambda} \ & oldsymbol{\lambda} \ & \mathcal{O}(NM^2) \ & \mathcal{O}(NM^2) \ & \mathcal{O}(N) \end{aligned}$ | $\mathcal{O}(NM^{2} + M^{3})$ $\mathcal{O}(N_{b}M^{2} + M^{3})$ $\mathcal{O}(M^{3})$ $\mathcal{O}(M^{3})$ $\mathcal{O}(Mk^{2})$ | $egin{aligned} \mathcal{O}(NM) \ \mathcal{O}(M^2 + N_bM) \ \mathcal{O}(M^2 + NM) \ \mathcal{O}(M^2 + NM) \ \mathcal{O}(M^2 + NM) \ \mathcal{O}(Mk) \end{aligned}$ |

## **B-Spline Inducing Features**

Construct inter-domain inducing variables by projecting GP onto a set of compactly supported basis functions


$$u_m = \langle f,$$



Correspondence to jake.cunningham.21@ucl.ac.uk



 $\phi_m \rangle_{\mathcal{H}}$ 



• Projecting onto B-spline basis,  $(K_{uu} - \sigma^{-2}K_{uf}K_{fu})$  is a band diagonal matrix

## Inference

• Cholesky factor of a band diagonal matrix computed in  $\mathcal{O}(Mk^2)$  where k is the bandwidth of the matrix

| Method                         | M = 1000                                  | M = 10,000 | M = 25,000 |
|--------------------------------|-------------------------------------------|------------|------------|
| AS-VGP (MSE $\times 10^{-1}$ ) | 8.67                                      | 4.53       | 2.94       |
| SVGP (MSE $\times 10^{-1}$ )   | 8.98                                      | /          | /          |
| AS-VGP (NLPD)<br>SVGP (NLPD)   | $\begin{array}{c} 1.35\\ 1.37\end{array}$ | 1.04<br>/  | 0.86       |
| AS-VGP (Time in s)             | 3.90                                      | 18.62      | 51.69      |
| SVGP (Time in s)               | 932                                       | /          | /          |



### in under 4 seconds!