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Abstract

In this work, we propose a new class of inter-domain variational Gaussian pro-
cess, constructed by projecting onto a set of compactly supported B-Spline basis
functions. Our model is akin to variational Fourier features. However, due to the
compact support of the B-Spline basis, we produce sparse covariance matrices.
This enables us to make use of sparse linear algebra to efficiently compute matrix
operations. After a one-off pre-computation, we show that our method reduces
both the memory requirement and the per-iteration computational complexity to
linear in the number of inducing points.

1 Introduction

Gaussian processes (GPs) scale infamously as O(N3) in computational complexity and O(N2) in
memory, where N is the number of training inputs, making them unfeasible for large datasets. To
overcome this limitation, so-called sparse GPs condition on a set of M ≪ N inducing points u,
which efficiently represent the input data (see [10] for a review). Amongst these methods, variational
approximations have proved popular [12, 5, 6, 4, 11, 3]. Introduced by [12], Sparse Variational
Gaussian processes (SVGP) work by minimising the Kullback-Leibler (KL) divergence between the
approximate and the true posterior, allowing us to learn the model parameters via gradient descent.
The resulting approximation scales as O(NM2 +M3) in computational complexity and O(NM) in
memory, which practically limits these methods to ∼10,000 inducing points.

Inter-domain GPs [13, 8] generalize the idea of inducing variables, allowing for more expressive
features and computationally efficient matrix algebra. Variational Fourier Features (VFFs) [4]
constructs inter-domain inducing features by projecting the GP onto a Fourier basis using the RKHS
inner product. This results in inducing features that span the width of the domain and thus have global
influence on the prediction. Further, the inducing variables are almost independent, providing com-
putationally efficient block-diagonal covariance matrices. In one dimension, this can be exploited to
reduce the computational complexity to O(M3) after an initial one-off pre-computation of O(NM2).

However, like SVGP, for large numbers of inducing points, VFF also becomes intractable. Variational
Inducing Spherical Harmonics (VISH) [3] improves upon VFF by first projecting the data onto the
unit hypersphere and then using a basis of spherical harmonics as inter-domain inducing features. As
the basis functions are orthogonal, this reduces the cost of matrix inversion to O(M) and the total
cost of inference to O(NbM

2) when using minibatching [5].

In this work, we wish to improve upon VFF for fast large-scale regression. We define a new
inter-domain approximation by projecting onto a basis of compactly supported B-splines. Due to the
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compact support of the B-spline basis, our method results in sparse band-diagonal covariance matrices.
This allows us to use operations from sparse linear algebra to reduce the cost of precomputation
to linear in the number of data points and the per-iteration cost to linear in the number of inducing
points, enabling us to scale to both large numbers of datapoints and large numbers of inducing points.

2 Background

2.1 Sparse Variational Gaussian Processes (SVGP)

Let f ∼ GP(0, k(·, ·)). Given a dataset {(xn, yn)}Nn=1, SVGP inference [5, 12] approximates the GP
posterior p(f |y) in terms of a set of M inducing features u = {f(zm}}Mm=1, where Z = {zm}Mm=1
are input locations that may be learned or fixed. At inference, the approximate posterior is a GP

GP
(
ku(·)⊤K−1

uum, k(·, ·) + ku(·)⊤K−1
uu(S−Kuu)K

−1
uuku(·)

)
, (1)

where Kuu := [k(zm, zm′)]Mm,m′=1 = [Cov(um,um′)]Mm,m′=1 is the cross-covariance of the induc-
ing features, ku(·) := [k(zm, · )]Mm=1 = [Cov(um, f(·))]Mm=1 is the vector of feature maps and m,S
are free variational parameters. The variational parameters Z, m and S are learnt by maximising the
Evidence Lower Bound (ELBO)

ELBO ≤ log p(y)−KL [q(f) ∥ p(f |y)] , (2)
which minimises the Kullback-Leibler (KL) divergence KL [q(f) ∥ p(f |y)] between the approximate
and true posterior. This is often learnt together with the kernel hyperparemeters. For the case of a
Gaussian likelihood, the ELBO is analytically given by

ELBO = logN
(
y|0,KfuK

−1
uuKuf + σ2

nI
)
− 1

2
σ−2
n tr

(
Kff −KfuK

−1
uuKuf

)
, (3)

where Kff := [k(xn,xn′)]Nn,n′=1 and Kuf := [ku(xn)]
N
n=1.

2.2 Variational Fourier Features (VFF)

VFF [4] is an inter-domain variational GP approximation that constructs inducing features as a Matérn
RKHS projection of the GP onto a set of Fourier basis functions um = ⟨f, ϕm⟩H, m = 1, . . . ,M,
where ⟨·, ·⟩H denotes the Matérn RKHS inner product and ϕ0(x) = 1, ϕ2i−1(x) = cos(ωix),
ϕ2i = sin(ωix) are the Fourier basis functions. This results in the matrices

Kuu = [⟨ϕi, ϕj⟩H]Mi,j=1 and ku(x) = [ϕi(x)]
M
i=1, (4)

where, due to the reproducing property, the feature vector ku(x) are elements of the Fourier basis and
are independent of kernel hyperparameters. This leads to several computational benefits. Firstly, we
can precompute ku(x) as it remains constant throughout training. Secondly, due to the orthogonality
of the Fourier basis, Kuu is the sum of a block diagonal matrix plus low rank matrices. This
structure can be exploited to significantly reduce the computational complexity, resulting in orders of
magnitude speed up in training and prediction when compared to standard sparse GP methods.

However, VFF has two main flaws. Firstly, VFF generalises poorly to higher dimensions due to the
use of a Kronecker product basis. Secondly, whilst Kuu has a computationally efficient structure,
Kuf is still a dense matrix. Thus, for example in the special case when the likelihood is Gaussian, we
are still required to compute a dense Cholesky factor of the M ×M matrix Kuu + σ−2KufKfu,
which has a per iteration cost of O(M3). For the non-Gaussian case, the computational cost is
dominated by the dense matrix multiplication KfuK

−1
uuS costing O(NM2) per iteration, although

this can be reduced to O(NbM
2) using stochastic optimization where Nb is the size of the minibatch.

3 Actually Sparse Variational Gaussian Process

In this section, we propose Actually Sparse Variational Gaussian Processes (AS-VGP). The core idea
is to utilise the same RKHS projections defined in VFF, except to project a GP onto a set of compactly
supported B-spline basis functions, instead of the Fourier basis functions. Unlike in VFF, the resulting
inducing features {um}Mm=1 are highly localised by the nature of their compact support, resulting in
both Kuu and Kuf becoming sparse matrices. We will see that these covariance structures allows us
to gain further computational benefits.

2



Figure 1: a) 1st order B-spline basis b) 2nd order B-spline basis c) 3rd order B-spline basis. Note that
for the same set of knots, the support of the B-splines increases in width with increasing order. This
has the effect that each B-spline basis function has intersecting support with an increasing number
of basis functions as the order increases. Consequently, this reduces the sparsity of the covariance
matrix as the B-spline basis order increases.

Table 1: Complexity of variational inference algorithms for sparse variational GP regression in 1D
with a Gaussian likelihood. N : number of datapoints; M : number of inducing points; k: bandwidth
of the covariance matrix; Nb: size of the mini-batch in stochastic variational inference.

Algorithm Pre-computation Computational Complexity Storage

SGPR ✗ O(NM2 +M3) O(NM)
SVGP ✗ O(NbM

2 +M3) O(M2)
VFF O(NM2) O(M3) O(M2)
VISH O(NM2) O(M3) O(M2)
AS-VGP (Ours) O(N) O(M(k + 1)2) O(M(k + 1))

3.1 B-Spline Inducing Features

B-spline basis functions of order k are a set of compactly supported piece-wise polynomial functions
of degree k. Their shape is controlled by an increasing sequence of knots V = {vm}Mm=0 ∈ R that
partition the domain into M sub-intervals. We denote the m-th B-spline basis function of order k by
Bm,k(x), whose implementation details can be found in Appendix C. Since a k-th order B-spline has
support over k + 1 sub-intervals, it has intersecting support with at most k + 1 other B-spline basis
functions (see Figure 1). This leads to the sparsity structure in the matrices Kuu and Kuf , as we will
show next.

We define the B-spline inducing features as the RKHS projection um = ⟨f, ϕm(·)⟩H onto the B-spline
basis, where ϕm(x) = Bm,k(x). Under this choice, the covariance between the inducing features
um and the GP f reduces to evaluating the B-spline basis

[ku(x)]m = Cov[f(x), um] = ⟨k(x, ·), ϕm⟩H = ϕm(x) = Bm,k(x). (5)

This is a sparse vector with at most k + 1 non-zero entries, since Bm,k(x) is non-zero if and only if
x ∈ [vm, vm+k+1] and is independent of the kernel hyperparameters, as in VFF. Next, the covariance
between the inducing features is given by

[Kuu]m,m′ = Cov[um, um′ ] = ⟨ϕm, ϕm′⟩H, (6)

which is only non-zero when ϕm and ϕm′ have intersecting support. This produces sparse band-
diagonal Kuu matrices with bandwidth equal to k + 1. Since the B-spline basis functions are
piecewise polynomials, we are able to analytically evaluate the inner product in closed form.

3.2 Actually Sparse Variational GP Inference

In the special case of 1-dimensional GP regression with a Gaussian likelihood, since Kuf does
not depend on kernel hyperparameters, we can precompute the matrix product KufKfu. However,
unlike in VFF, due to the sparsity pattern in Kuf , the matrix product is now a band diagonal matrix
with bandwidth equal to that of Kuu. Computing the ELBO in equation (3), therefore has a per
iteration cost of O(M(k + 1)2), required to take the Cholesky decomposition of a banded matrix
with bandwidth k + 1. However, the inverse of a banded matrix is typically not banded, making it
difficult to avoid handling a dense matrix when computing the trace of K−1

uuKufKfu in the ELBO.

3



Table 2: Predictive mean squared errors (MSEs), negative log predictive densities (NLPDs) and
wall-clock time in seconds with one standard deviation based on 5 random splits for a number of UCI
regression datasets. All models use a Matérn-3/2 kernel and L-BFGS optimiser.

MSE NLPD

Dataset N M SGPR VFF AS-VGP SGPR VFF AS-VGP

Air Quality 9k 500 0.643 ± 0.035 0.664 ± 0.037 0.668 ± 0.038 1.235 ± 0.003 1.247 ± 0.003 1.254 ± 0.003
Synthetic 10k 50 0.040 ± 0.000 0.039 ± 0.000 0.039 ± 0.000 -0.162 ± 0.000 -0.152 ± 0.000 -0.146 ± 0.000
Rainfall 43k 700 0.048 ± 0.001 0.083 ± 0.002 0.084 ± 0.002 0.104 ± 0.001 0.246 ± 0.001 0.287 ± 0.001
Traffic 48k 300 0.996 ± 0.014 1.001 ± 0.012 1.002 ± 0.012 1.415 ± 0.001 1.416 ± 0.001 1.416 ± 0.001

Table 3: Predictive mean squared errors (MSEs), negative log predictive densities (NLPDs) and
wall-clock time in seconds with one standard deviation based on 5 random splits of the household
electric power consumption dataset containing 2, 049, 279 data points. Number of inducing points
used is given by M .

Method M = 1000 M = 10, 000 M = 25, 000

AS-VGP (MSE ×10−1) 8.67± 0.01 4.53 ± 0.00 2.94 ± 0.00
SVGP (MSE ×10−1) 8.98 ± 0.45 / /

AS-VGP (NLPD) 1.35 ± 0.00 1.04 ± 0.00 0.86 ± 0.00
SVGP (NLPD) 1.37 ± 0.25 / /

AS-VGP (Time in s) 3.90 ± 0.05 18.62 ± 0.09 51.69 ± 0.23
SVGP (Time in s) 932 ± 1.18 / /

Fortunately, using the banded operators introduced by [1], given a banded Cholesky factor of Kuu,
we are able to compute only the band elements of its inverse at O(M(k + 1)2). Given that KufKfu

is a banded matrix, we can then compute the trace by computing only the bands of the matrix product
as O(N(k + 1)2) allowing us to avoid instantiating a dense matrix. Table 1 highlights the linear
scaling in both memory and computational complexity with inducing points of our method compared
to other sparse variational methods.

4 Experiments

Here we showcase the performance of AS-VGP on two experiments, with details in Appendix A.

Regression Benchmarks. We first test our method against both SGPR and VFF on 3 UCI datasets
and a toy synthetic dataset. Comparing results in Table 2, we show that AS-VGP is comparative
in performance to VFF on every dataset, whilst being both less memory and computationally
intensive. We note that SGPR performs slighlty better than both VFF and AS-VGP, but at a higher
computational complexity.

Large-Scale Regression. In this example, we illustrate the scalability of our method both in the
number of data points and in the number of inducing points, using the household electric power
consumption dataset, where N = 2, 049, 279. Results are displayed in Table 3. When M=1000,
AS-VGP outperforms SVGP both in predictive performance (MSE) and uncertainty quantification
(NLPD). AS-VGP also shows an order of magnitude improvement over SVGP using minibatching
in terms of wall-clock time. Our results also show that AS-VGP scales approximately linearly in
computational time with the number of inducing points.

5 Conclusion

We introduced a novel inter-domain GP model wherein the inducing features are defined as RKHS
projections of the GP onto the B-spline basis functions. This results in covariance matrices that
are sparse, allowing us to draw entirely on techniques from sparse linear algebra to do training and
inference. Our experiments in 1D demonstrate that we get significant computational speed up and
memory savings without sacrificing the accuracy.
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A Experiment Details

All experiments were performed using a AMD Ryzen 2920X 12-Core CPU and a NVIDIA Titan V
GPU. Below, we include specific details on the two experiments conducted.

Regression Benchmarks For each dataset (air quality, synthetic, rainfall, traffic), we randomly
sample 90% of the data for training and 10% for testing, repeating this 5 times to get means and
standard deviations. When using AS-VGP, we normalise the inputs such that the space between knots
is equal to 1 to avoid numerical issues caused by large gradients.

For the synthetic dataset, we generate 10,000 random noisy observations from the test function

f(x) = sin(3πx) + 0.3 cos(9πx) +
sin(7πx)

2
.

Large-scale Regression We use the household electric power consumption dataset, which, after
removing missing values has 2,049,279 entries. We repeat each experiment 5 times by randomly
sampling 95% of the data for training and use the remaining 5% for evaluation. For each experiment,
we use the Matérn-3/2 kernel. We note that we couldn’t pre-compute KufKfu in VFF, due to memory
constraints.
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Metrics We use the mean-squared error (MSE) and the negative log-predictive density (NLPD) to
evaluate the performance of our model. These are defined as

MSE({Xn, yn}Nn=1) =
1

N

N∑
n=1

∥yn − µ(Xn)∥2, (7)

NLPD({Xn, yn}Nn=1) = − 1

N

N∑
n=1

log

∫
p(yn|fn)N (fn|µ(Xn), ξ(Xn)) dfn, (8)

where µ, ξ are the posterior mean and variance, respectively.

B RKHS Inner Products

The inner products corresponding to the Matérn-1/2 and Matérn-3/2 RKHS defined over the domain
D = [a, b], as given in [2, 4], are

⟨f, g⟩Hk1/2
=

l

2σ2

∫ b

a

f ′g′dx+
1

2lσ2

∫ b

a

fgdx+
1

2σ2
[f(a)g(a) + f(b)g(b)], (9)

⟨f, g⟩Hk3/2
=

l3

12
√
3σ2

∫ b

a

f ′′g′′dx+
l

2
√
3σ2

∫ b

a

f ′g′dx+

√
3

4lσ2

∫ b

a

fgdx (10)

+
1

2σ2
[f(a)g(a) + f(b)g(b)] +

l2

2σ2
[f ′(a)g′(a) + f ′(b)g′(b)], (11)

respectively, where l, σ are the lengthscale and amplitude hyperparameters.

When performing RKHS projections, it is important to note that we must use B-splines that belong to
the RKHS defined by the our choice of kernel. As stated in [7], the RKHS generated by the Matérn-ν
kernel k is norm-equivalent to the Sobolev space Hν+1/2. Due to their polynomial form, B-splines
of order k are Ck+1 and therefore belong to the Sobolev space Hk+1.

From Section 3.2, to minimise computational complexity we wish to use B-spline basis functions
that minimise the bandwidth of the Kuu matrix. As a result for the Matérn-ν kernel we project onto
B-splines of order ν − 1/2.

C Implementation of the B-Splines

The m-th B-spline basis function of order k, which we denote by Bm,k(x) can be computed according
to the Cox-de-Boor recursion formula [9]

Bm,0(x) =

{
1, if vm ≤ x ≤ vm+1,

0, otherwise,
(12)

Bm,k(x) =
x− vm

vm+k − vm
Bm,k−1(x) +

vm+k+1 − x

vm+k+1 − vm+1
Bm+1,k−1(x). (13)

The case k = 0 corresponds to a top-hat function 1[vm,vm+1](x), with support spanning a single
sub-interval. In the case k = 1, we have the piecewise linear function

Bm,1(x) =


x− vm

vm+1 − vm
, for x ∈ [vm, vm+1],

vm+2 − x

vm+2 − vm+1
, for x ∈ [vm, vm+1],

0, otherwise,

(14)
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which corresponds to the tent map, spanning two sub-intervals (see Figure 1 (a)). In the case k = 2,
we have the piecewise quadradic function

Bm,2(x) =



(x− vm)2

(vm+2 − vm)(vm+1 − vm)
, for x ∈ [vm, vm+1],

(x− vm)(vm+2 − x)

(vm+2 − vm)(vm+2 − vm+1)
+

(vm+3 − x)(x− vm+1)

(vm+3 − vm+1)(vm+2 − vm+1)
, for x ∈ [vm+1, vm+2],

(vm+3 − x)2

(vm+3 − vm+1)(vm+3 − vm+2)
, for x ∈ [vm+2, vm+3],

0, otherwise,
(15)

spanning three sub-intervals (see Figure 1 (b)).
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