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Abstract

Policy makers need to predict the progression of an outcome before adopting
a new treatment policy, which defines when and how a sequence of treatments
affecting the outcome occurs in continuous time. Commonly, algorithms that
predict interventional future outcome trajectories take a fixed sequence of future
treatments as input. This excludes scenarios where the policy is unknown or
a counterfactual analysis is needed. To handle these limitations, we develop
a joint model for treatments and outcomes, which allows for the estimation of
treatment policies and effects from sequential treatment–outcome data. It can
answer interventional and counterfactual queries about interventions on treatment
policies, as we show with a realistic semi-synthetic simulation study. This abstract
is based on work that is currently under review for AAAI-23.

1 Introduction

What policy should we adopt? In healthcare, for example, we observe patients’ physiological markers
(outcomes) changing over time. We want to affect these outcomes by actions (treatments) such as
doses of a medicine. Sequences of outcomes and treatments are recorded as a time series. The choice
of when to take what action constitutes the policy. To improve our policies, we must be able to assess
their consequences: What is the effect of a given policy? What will be the effect of a change to a
different policy? What would have happened if a patient had followed a different treatment policy?
These questions correspond to observational, interventional, and counterfactual queries.

In high-risk domains such as public health and healthcare [Schulam and Saria, 2017, Bica et al., 2020],
it is important to quantify risks and expectations accompanying the policy decision, as well as to
evaluate the performance of past decisions [Oberst and Sontag, 2019, Tsirtsis and Gomez Rodriguez,
2020, Tsirtsis et al., 2021]. This requires estimating the causal effect of an intervention affecting the
treatment policy on the outcome progression using a causal model.
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Figure 1: (a) Treatment–outcome data for two patients, following distinct policies πA and πB in the
observation period [0, 10]. (b) The interventional query corresponds to how the outcome trajectory
(r) will progress under a different policy πB after the observation period [0, 10] (shaded area). (c)
The counterfactual query corresponds to how the outcome trajectory (r) would have progressed
if the policy had been set to π(r) = πB instead, in the observation period [0, 10]. Notice how the
algorithm chooses to keep some of the observed treatments as counterfactual treatments acf , where
the counterfactual intensity is higher than the original observational intensity.

Observed treatment–outcome data are always created by some existing policy; however, the policy is
generally not recorded and may be known only implicitly through the observed data. Consequently,
this link from past outcomes to future treatments is largely neglected in the sequential treatment–
outcome literature, and the causal analysis is generally limited to a fixed sequence of treatment
interventions set by hand or generated by a simplistic parametric model [Schulam and Saria, 2017,
Lim et al., 2018, Bica et al., 2020, Seedat et al., 2022]. Such models cannot generalize beyond
simulations to the analysis of realistic, alternative treatment policies in real-world applications. Also,
evaluating treatment policies using counterfactual reasoning is not considered by most of the literature,
which focuses on future progression.

To address these limitations, we propose a joint treatment–outcome model. Our model can be learned
from observational sequential treatment–outcome data (Figure 1(a)) and can estimate future and
counterfactual progression. We show that an intervention on a treatment policy is equivalent to a
stochastic intervention on sequential treatments, which we can model with our joint model, and use it
to answer interventional (Figure 1(b)) and counterfactual (Figure 1(c)) queries.

2 Problem Definition

Consider an observational data set D,

D =
{

π[0,T ]︸ ︷︷ ︸
policy label

, {(ti,mi)}Na
i=1︸ ︷︷ ︸

treatments a

, {(tj , yj)}No
j=1︸ ︷︷ ︸

outcomes o

}
,

observed in the period T = [0, T ]. For notational simplicity, the data set is defined for a single
individual. Our model can be trivially generalized to multiple individuals.

A policy label π[0,T ] ∈ Π specifies a treatment intensity function λ∗
π(t,m) in the interval [0, T ] that

defines when and how a sequence of continuous-time treatments occur. We assume the data set D
contains the policy label π[0,T ], but its corresponding intensity function λ∗

π(t,m) is unobserved. A
treatment tuple ai = (ti,mi) consists of an arrival time ti and a treatment mark mi. An outcome
tuple oj = (tj , yj) consists of a measurement time tj and an outcome value yj . The history
H≤t = {π≤t,a≤t,o≤t} contains the information about the past policy π≤t, past treatments a≤t =
{(ti,mi) : ti ≤ t} and past outcomes o≤t = {(tj , yj) : tj ≤ t}.

We observe a continuous-time process Y≤T = {y(τ) : τ ≤ T } as outcome tuples o measured at
times to = {tj}No

j=1. To answer causal queries, we model the potential outcome trajectory Y>τ̃ [π̃>τ̃ ],
under an intervened policy specified by π̃>τ̃ . When the intervention time τ̃ is set to the end of
the observation period τ̃ = T , we call the estimation task a policy intervention, as its computation
requires access to the interventional distribution (Figure 1(b)):

P (Y>T [π̃>T ] | H≤T ). (1)
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Also, we can set the intervention time τ̃ to the start of the observation period τ̃ = 0 and consider a
hypothetical scenario under an alternative treatment policy specified by π̃≤T . We call this estimation
task a policy counterfactual, as its computation requires access to the counterfactual distribution
(Figure 1(c)):

P (Y≤T [π̃≤T ] | H≤T ). (2)

Under a set of causal assumptions defined in Appendix C, we show in Appendix D that (i) the potential
outcome trajectory Y>T [π̃>T ] is equivalent to the potential outcome trajectory under a sequence of
stochastic interventions on treatments and (ii) it is identified using two statistical quantities [Pearl,
2009, Hernán and Robins, 2010]. To estimate these statistical quantities from the observational data,
we propose a joint treatment–outcome model.

3 Treatment–Outcome Model

Our joint model is a combination of two conditional intensity functions: (i) treatment intensity:
λ∗
π(t,m) = λ∗

π(t)p
∗(m | t) and (ii) outcome intensity: λ∗

o(t, y) = λ∗
o(t)p

∗(y | t). We assume the
measurement times to of the outcomes are given, which is valid for example when the data are
collected through automated patient monitoring in healthcare. Then, the joint distribution for the
data set D can be written in terms of two intensity functions as follows [Daley and Vere-Jones, 2003,
Rasmussen, 2011]:

p(D) =

I∏
i=1

λ∗
π(ti)p

∗(mi | ti)︸ ︷︷ ︸
Treat. Intensity

∏
tj∈to

p∗(yj | tj)︸ ︷︷ ︸
Out. Model

× exp(−Λ), (3)

with the integral term Λ =
∫
T λ∗

π(τ)dτ .

3.1 Treatment Intensity

We model the treatment time intensity λ∗
π(τ) using a constant baseline β0 and three functions with

GP priors, gb, g∗a, g
∗
o ∼ GP . The latent-state function gb models the baseline intensity. The regressive

components g∗a and g∗o model the dependence on past treatments and outcomes respectively [Liu and
Hauskrecht, 2019]. The treatment intensity λ∗

π(τ) is defined as follows:

λ∗
π(τ) =

(
β0︸︷︷︸
PP

Baseline

+ gb(τ)︸ ︷︷ ︸
NHPP

Baseline

+ g∗a(τ)︸ ︷︷ ︸
Treat.
Effect

+ g∗o(τ)︸ ︷︷ ︸
Out.

Effect

)2
.

The model and kernel definitions are detailed in Appendix F.1-2.

3.2 Outcome Model

We model the outcome trajectory Y = {y(τ) : τ ∈ R≥0} over time τ , combining three independent
components: (i) a baseline progression, (ii) treatment effects and (iii) a noise variable [Schulam and
Saria, 2017, Xu et al., 2016, Zhang et al., 2020]:

y(τ) = fb(τ)︸ ︷︷ ︸
Baseline

+ fa(τ ;a)︸ ︷︷ ︸
Treatment Effect

+ ϵ(τ)︸︷︷︸
Noise

. (4)

The baseline progression and the treatment effect functions are modeled by GP priors, with an
independent Gaussian noise ϵ(τ) ∼ N (0, σ2

ϵ ). The model and kernel definitions are detailed in
Appendix G.

4 Experiments

We evaluate our model on two causal inference tasks: (i) the policy intervention (Equation 1) and (ii)
the policy counterfactual (Equation 2), by setting up a realistic semi-synthetic simulation scenario.

We fit our joint model to a challenging real-world data set on meal–blood glucose dynamics [Zhang
et al., 2020, Wyatt et al., 2021] to obtain the ground-truth data generators. The ground-truth models
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Table 1: DACC results for two policy interventions {[π̃>T = πA], [π̃>T = πB ]} over 10 runs. The
observed policy is π[0,T ] = πA. DACC closer to 50% is better, as it suggests estimated trajectories
are inseparable from ground-truth trajectories.

[π̃ = πA] [π̃ = πB ]

JOINT MOD. DACC ↓ DACC ↓
OBS-EST 51.8± 2.8% 86.4± 2.5%
INT-EST 51.8± 2.8% 51.8± 2.8%
INT-ORACLE 50.3± 2.3% 50.3± 2.3%

Table 2: DACC results for the policy counterfactual in the observed period [0, T ] with the policy
intervention [π̃[0,T ] = πB ] over 10 runs. The observed policy is π[0,T ] = πA. DACC closer to 50% is
better, as it suggests estimated trajectories are inseparable from ground-truth trajectories.

[π̃ = πB ]

JOINT MOD. DACC ↓
INT-EST 90.1± 4.1%
CF-EST 60.8± 2.2%
CF-ORACLE 51.8± 2.7%

are used to simulate samples from observational, interventional and counterfactual distributions.
Simulated patients are divided into two policy groups {πA, πB}, representing different treatment
policies of different hospitals, countries, etc. The details of the simulation study are presented in
Appendix J.

We define three joint estimation models: OBS-EST, INT-EST and CF-EST. OBS-EST is trained
on the observational data of each individual to generate predictions. INT-EST adjusts predictions
of OBS-EST by accounting for the fact that the treatments are generated by the estimated policy
for another individual, as a consequence of a policy intervention. CF-EST additionally conditions
predictions of INT-EST with the posterior of the individual’s noise terms. We denote ground-truth
versions of these models as OBS-ORACLE, INT-ORACLE and CF-ORACLE, which represent the
performance of the estimated models if infinite training data were available.

To measure how similar predicted trajectories are to samples from the ground-truth distribution, we
train discriminators. Ideally, for samples of the same distribution, predicted trajectories should be
inseparable from ground-truth trajectories, leading to a 50% discriminator accuracy (DACC).

For the policy intervention task (Table 1), we see that the INT-EST model is able to sample observa-
tional and interventional trajectories close to ground-truth distributions when the intervention policy
is (i) same as the observed policy [π̃ = πA] and (ii) different from the observed policy [π̃ = πB ],
while the OBS-EST model fails in the latter case. For the policy counterfactual task (Table 2), we see
the INT-EST model fails to sample counterfactual trajectories close to the ground-truth counterfactual
distribution [π̃ = πB ], as it does not take the individual’s noise posterior into account. On the
other hand, the CF-EST model is able to sample counterfactual trajectories close to the ground-truth
counterfactual distribution.

5 Conclusion

To study what happens if the (possibly implicit) treatment policy of one individual (hospital, country,
. . . ) is or had been adopted by another individual, we proposed a model that jointly considers se-
quences of treatments and outcomes of each individual. Theoretically, we showed that an intervention
on a treatment policy is equivalent to a sequence of stochastic interventions on treatments, whose
potential outcomes can be estimated from observational data with the joint model. In a semi-synthetic
experiment, we demonstrated that the joint model can answer causal queries about the interventional
and counterfactual distributions of the outcome after an intervention on the treatment policy.
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