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Abstract

Data imputation and prediction is a key component of intelligent upgrading of
power systems. Data obtained from the real world may have varying degrees of
missing data. These missing components have a significant impact on the out-
come of the prediction model. In addition, the single-objective Gaussian process
(SOGP) lacks the ability to establish correlation models between multiple datasets,
which can not improve the accuracy of data imputation and forecasting. To handle
multi-output imputation and forecasting problems, this paper a novel kernel-based
multi-output Gaussian process (MOGP) model to achieve data imputation and pre-
diction simultaneously.

1 Introduction

Statistical and machine learning models have been proposed for solar, wind and load generation
forecasting to address the technical challenges posed to the grid by stochastic renewable energy
generation output Dreidy et al. [2017]. As reported in Panapakidis et al. [2018], the datasets recorded
in practice may contain missing values due to a variety of reasons, which will lead to potential
bias in data prediction by traditional training methods. However, most existing machine learning-
based approaches in smart grid scenarios are based on complete datasets, only a few studies have
considered the impact of flawed datasets. In addition, data from different devices in the same region
can significantly correlate for multiple prediction tasks. Therefore, using data correlation to build
a multi-objective model that accurately interpolates missing data and then uses the interpolated
historical data to improve prediction performance is critical to upgrading next-generation power
systems.

Compared with other techniques, such as support vector regression (SVR) Drucker et al. [1996], the
Gaussian process (GP) predicts the value of unknown points based on input training data using the
measurement of homogeneity between points Rasmussen and Williams [2006]. In the field of smart
grid engineering, most Gaussian process (GP) models are utilized to forecast tasks using single-
output GP (SOGP) model based on one or more time series datasets. In recent years, the multi-output
learning (MOL) framework has been successfully applied to various time series prediction problems,
and using MOL to learn all tasks jointly can significantly alleviate problems such as overfitting and
model instability due to sparse training data, while improving performance compared to SOGP
methods Liu et al. [2020]. In contrast to other MOL techniques by sharing features, MOGP uses
one model rather than multiple SOGP models to learn concurrent correlations between and within
tasks. MOGP has been shown to be effective in multi-output scenarios such as patient monitoring
and radiotherapy Durichen et al. [2015], robotic inverse dynamics Chai et al. [2008], classification
of electrocardiogram signals Skolidis and Sanguinetti [2011], compiler performance Bonilla et al.
[2007] and environmental sensor networks Osborne et al. [2012].
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In a multi-output learning problem of M tasks, a MOGP model can be taken to deal with M tasks
simultaneously. Given M tasks of length N

f(X) = (f1(x1), · · · , f1(xN ), · · · , fM (x1), · · · , fM (xN ))⊤ (1)

where x = {xn|n = 1, · · · , N} and f = {fm(·)|m = 1, · · · ,M} are the training inputs and outputs
for M tasks, respectively. N is the total number of training data for each task.

The covariance function can be defined with the covariance corresponding to tasks and the covari-
ance corresponding to inputs

cov(fm(x), fm′(x′)) = k(m,m′)× k(x,x′) (2)

where cov(fm(x), fm′(x′)) is the covariance function for two independent tasks. k(m,m′) and
k(x,x′) are the tasks relationship and inputs relationship, respectively.

Then the covariance matrix K for f can be expressed as

K = Km(M,wm)⊗Kt(X,wt) (3)

where Km(·) and Kt(·) are the covariance matrix between tasks and the covariance matrix between
the corresponding inputs, respectively. M = {m|m = 1, · · · ,M} and X = {xm|m = 1, · · · ,M}.
⊗ is the Kronecker product operator. Details are presented in Appendix A.

The performance provided by MOGP models is relied on the time series correlation between tasks.
In extreme cases with large proportions of data missing, the MOGP based forecasting model is
affected if the correlated tasks are temporally shifted. In this paper, the MOGP model will first use
the correlation of multiple datasets from multiple tasks to impute missing data or replace anomalous
data, and then use the complete data as training data to for multi-output forecasting tasks. In addition,
a reconstruction kernel considering periodicity and smoothness is used to capture periodic effects in
energy data.

2 Related Work

An increasing number of engineering applications are beginning to consider the use of state-of-
the-art multi-output learning techniques Ben-David and Schuller [2003]. To learn the data cor-
relation, Fiot and Dinuzzo [2018] utilized the kernel-based multi-output learning method to fore-
cast the electricity demand. Gilanifar et al. [2020] proposed a Bayesian spatiotemporal Gaussian
process model to forecast load consumption. Zhang et al. [2014] utilized a multi-output Gaussian
process method to solve the load forecasting problem. Shireen et al. [2018] proposed an iterative
multi-output learning framework for time series PV generation forecasting problems. Unfortunately,
for many real-life scenarios, task description features are either unavailable or difficult to define
correctly. Multi-output Gaussian processes also have been utilized to be effective in multi-output
scenarios Durichen et al. [2015], Skolidis and Sanguinetti [2011]. However, these multi-outputs
forecasting papers only analyze the prediction performance and do not consider the case of insuffi-
cient data or data anomalies which is not reasonable in the real-world case. In this paper, we propose
to use the MOGP model to achieve data imputation and prediction simultaneously.

3 Kernel Reconstruction for MOGP

This section will use a more flexible and powerful model based on the intrinsic correlation model
(ICM), namely the linear model of coregionalization (LMC) model, by utilizing a sum of Q separa-
ble kernels Zhang [2007]. We assume fm(x) =

∑Q
q=1 f

q
m(x), then the entire covariance function

in the LMC can be set as

cov(fm(x), fm′(x′)) =

Q∑
q=1

kq(m,m′)× kq(x,x′) (4)

Then the covariance matrix K of f corresponding to the LMC model takes the form as follows:

K =

Q∑
q=1

Kq
m(M,wm)⊗Kq

t (X,wt) (5)
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where q = 1, · · · , Q is the number of groups, which means that there are Q groups in total and they
are independent. wm and wt are the vectors associated with the hyperparameters for Kq

m(·) and
Kq

t (·), respectively. Meanwhile, each group share the same convariance function. In other words,
each kq(x,x′) can be different, it means that kq(m,m′) can model the relationship between tasks
under each kq(x,x′). The ICM can be considered as a specific case of the LMC, with Q = 1.
It is more limited than the LMC because the ICM applies the same kernel to construct the auto-
covariances and cross-covariances between the multiple outputs Altamirano and Tobar [2022].

3.1 Kernel Reconstruction

As discussed in Rasmussen and Williams [2006], there are many existing covariance functions that
can be used. Multiplying kernels is the usual method to merge two or more kernels that is an
elementwise multiplication of their corresponding covariance matrices Rasmussen and Williams
[2006]. To add the flexibility of our model, we consider to design a mixture of two frequently used
covariance functions, Rational Quadratic (RQ) and Periodic (PE) covariance functions, to capture
the periodicity and smoothness of energy data to vary over longer distances.

KRP (x, x
′) = KRQ ∗KPE = σ2

(
1 +

(x− x′)2

2αℓ2RQ

)−α

∗ exp
(
− 2sin2(π|x− x′|/p)

ℓ2PE

)
(6)

where σ2 are the output variances of covariance functions, respectively. ℓRQ and ℓPE are the length
scales of RQ and PE covariance functions, respectively. α is the hyper-parameter that determine the
relative weighting of large scale and small scale variations.

More specifically, this kernel function will allow us to model only locally periodic functions and
preserve the characteristics of each task. The shape of the repetitive part of the function can be
varied over time and the correlations occurring within the task are automatically learned by fitting a
covariance function within the MOGP framework.

4 Results and Discussion

Table 1: Comparison results of MSE values obtained by SOGP and MOGP methods for imputation
and forecasting

Approach Demand PV Wind
Imputation (1440*3)

SOGP 7.147E-1(1.58E-2) 6.975E-1(1.42E-4) 6.557E-1(9.06E-3)
MOGP 4.114E-2(7.51E-3) 5.058E-2(6.78E-5) 1.271E-1(7.65E-3)

Prediction (1440*3)
SOGP 7.469E-1(9.58E-3) 9.157E-1(1.27E-3) 8.491E-1(9.64E-2)
MOGP 2.132E-3(7.98E-9) 1.324E-1(1.87E-7) 8.759E-2(4.98E-8)
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Figure 1: Comparison of the imputation and prediction performance of using the SOGP and MOGP
methods for the load demand task.

Our experimental simulation considers the energy datasets for isolated power grid at the English
Channel Xu et al. [2021]. We consider three types of sources including the wind generation, the
PV generation, and the load demand. The training set and the validation set consist of data col-
lected from three islands including Ushant, Lundy and Isles of Scilly based on the EDF energy
company energy company. Details about the performance metric are presented in Appendix B. As
introduce in Section 3, by using the LMC as the MOGP model, we directly apply the modified
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mixtrue kernel to the MOGP method. The historical data of wind generation, PV generation, and
load demand for a period of time, sixty days are used to constitute the training datasets while the
forecasting performance of different tasks is validated for a period of 24 hours.

The overall comparison results by SOGP and MOGP methods for three different number of datasets
are given in Table 1. From these results, we can see that using the MOGP method has a significant
impact on the performance of all three types of energy data. To have a better investigation for the
performance difference achieved by using the standard SOGP method against the MOGP method,
we also show the comparison SMAPE results in Fig. 2. From this result, it is clear to see that the
performance has been greatly improved, especially the prediction results for demand. In addition,
to have a better visual interpretation of the performance comparison, we plot the imputation and
forecasting results for load demand in Fig. 1. From the trajectories shown, we can see that both the
imputation and forecasting performance of demand energy of SOGP is poor and there is a better fit
to the ground truth with the MOGP model. This is anticipated as the covariance matrix improves
performance by reflecting the correlation of multiple data sets from multiple tasks. In contrast, by
being equipped with our proposed MOGP method, the imputation and forecasting performance have
been improved against the SOGP method and other methods, MTBSGP Gilanifar et al. [2020] and
MTLGPTS Shireen et al. [2018], in Table 2.
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Figure 2: SMAPE value for three datasets.

Table 2: Comparison results obtained by different methods
Type MTLGPTS MTBSGP MOGP

Imputation MSE Values
Demand 1.062E-1(1.38E-3) 1.833E-1(9.20E-5) 3.984E-2(2.61E-4)

PV 4.316E-1(2.57E-2) 3.435E-1(2.20E-3) 5.817E-2(3.35E-4)
Wind 2.715E-1(7.43E-4) 2.297E-1(1.41E-3) 1.436E-1(6.33E-4)

Imputation SMAPE Values
Demand 4.587E+1(7.24E-0) 4.746E+1(1.17E+1) 3.621E+1(3.41E-0)

PV 4.985E+1(14.58E+1) 5.243E+1(8.25E-0) 4.038E+1(2.95E-0)
Wind 5.357E+1(2.25E+1) 6.125E+1(8.65E-0) 4.259E+1(5.52E-0)

Prediction MSE Values
Demand 9.772E-2(9.56E-3) 9.569E-2(4.24E-4) 2.035E-3(3.42E-5)

PV 6.263E-1(5.47E-3) 5.346E-1(5.84E-4) 1.372E-1(6.54E-4)
Wind 3.552E-1(9.23E-3) 3.254E-1(6.21E-4) 8.534E-2(4.02E-5)

Prediction SMAPE Values
Demand 5.447E+1(8.68E-0) 5.236E+1(1.85E+1) 3.423E+1(1.54E-0)

PV 6.056E+1(1.96E+1) 5.971E+1(1.78E+1) 4.098E+1(1.42E+1)
Wind 5.127E+1(2.47E+1) 5.972E+1(1.16E+1) 4.018E+1(3.57E-0)

5 Conclusions

We utilize the LMC-based MOGP approach, which exploits the MOGP to establish correlations
between similar datasets while improving the imputation and prediction performance of multiple
imputation and prediction problems in smart grid scenarios. The simplified SOGP model supports
data imputation and prediction technologies in the absence of data. However, the MOGP model
can further improve performance by using the correlation of data. The MOGP model proposed in
this paper can effectively achieve the multi-output results for designing smart grids, and mitigating
climate change.
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Appendix A

From the function-space view, a GP is defined as a real process f(x) ∼ GP (m(x), k(x, x′)) speci-
fied by its mean function m(x) and a covariance function k(x,x′):

m(x) = E[f(x)]
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)]

, (7)

where x = (x1, · · · , xn) ∈ Rn is an input vector. The convariance function can be treated as a
distance of x and x′.

Given the n training data set (x,y) and n∗ testing data set (x∗,y∗), the joint distribution based on
the prior can be given by [

y
y∗

]
∼ N

(
0,

[
K(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
(8)

where K(x,x∗) represents the n× n∗ matrix of the covariances of the evaluation at all training and
testing data points, other entries K(x,x), K(x∗,x) and K(x∗,x∗) are similar.

The conditional distribution p(y∗|x∗,x,y) over functions based on the training data points can be
written as

p(y∗|x∗,x,y) ∼ N(K(x∗,x)K(x,x)−1y),

K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x,x∗)
(9)

where the first part is the mean function and the second part is the covariance function. In gen-
eral, different kernel functions have multiple hyperparameters θ that needs to be adjusted. The
hyperparameters for the kernel function can be optimized by minimizing the negative log marginal
likelihood Chuu et al. [2021].

−log(p(y|x, θ)) =1

2
yTK(x,x)−1y +

1

2
log(|K(x,x)|)

+
n

2
log(2π)

(10)

The gradient descent algorithm can be applied into equation (10) iteratively to find the best hyperpa-
rameters θ∗.

Appendix B

Performance metric: Here are two widely used metrics. The first one, mean squared error (MSE), is
used to evaluate the performance of the imputation and forecasting.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, (11)

where N is number of instances in the testing set, yi and ŷi are the ground truth and predicted value,
respectively.

Another metric called symmetric mean absolute percentage error (SMAPE) is also utilized to evalu-
ate the performance.

SMAPE =
100%

N

N∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

, (12)
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