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Abstract

Data in many applications follows systems of Ordinary Differential Equations
(ODEs). This paper presents a novel algorithmic and symbolic construction for
covariance functions of Gaussian Processes (GPs) with realizations strictly fol-
lowing a system of linear homogeneous ODEs with constant coefficients, which
we call LODE-GPs. Introducing this strong inductive bias into a GP improves
modelling of such data. Using smith normal form algorithms, a symbolic tech-
nique, we overcome two current restrictions in the state of the art: (1) the need
for certain uniqueness conditions in the set of solutions, typically assumed in clas-
sical ODE solvers and their probabilistic counterparts, and (2) the restriction to
controllable systems, typically assumed when encoding differential equations in
covariance functions. We show the effectiveness of LODE-GPs in experiments.

1 Introduction

Many real world tasks have underlying dynamic behavior, for example chemical reactions Goeke
et al. [2012], systems in bioprocess engineering Hernández Rodríguez et al. [2022], or population
dynamics Wangersky [1978]. Many such systems are linear or can be decently linearized, such as
in control theory Zerz [2000], biology De Hoon et al., process engineering [Adkins and Davidson,
2012, §9], or engines Bertin et al. [2000]. Including prior knowledge in the form of differential equa-
tions benefits the model fit and enhances interpretability for a model. Hence, modelling differential
equations has therefore been the focus of much research in Deep Learning (DL) (e.g. Hochlehnert
et al. [2021], Raissi et al. [2019], Lagaris et al. [2000], van Milligen et al. [1995], Drygala et al.
[2022]). While the performance of DLs models is good, they usually lack the ability to perform
uncertainy estimates as many don’t have a probabilistic nature and can’t guarantee to strictly satisfy
the equations. Whereas the first point is inherent in Gaussian Processes (GPs) and the introduction
of physical information has been focus of much research in that area as well (e.g. Lange-Hegermann
[2018], Jidling et al. [2017], Särkkä [2011], Gonçalves et al. [2021], Ulaganathan et al. [2016]).
In particular Lange-Hegermann [2018] showed the hidden assumption of previous works, which
limited them to controllable systems, by building a mathematical foundation.

Other probabilistic models are often based on, more classical, methods like Runge-Kutta or Kalman
filters Schmidt et al. [2021], Schober et al. [2019, 2014], Bosch et al. [2021] and often just estimate
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the solution of Ordinary Differential Equation (ODE) initial value problems through approximation,
thereby not strictly guaranteeing to yield solutions of the ODE. This class of algorithms is commonly
used to solve non-linear ODEs, but typically require that systems are well-posed, in particular the
solution needs to be unique once a finite number of initial conditions is known. While this second
limitation is typically irrelevant in physical or biological systems, it is strongly relevant in systems
in engineering, such as in control systems with their freely choosable inputs.

For GP priors for decoupled ODE systems with constant coefficients and right hand side functions
see Alvarez et al. [2009], which considers the right hand side functions as latent, hence these models
are called Latent Force Model (LFM). A GP prior on these latent forces is assumed and is pushed
forward through differential operators and Green’s operator.

This paper overcomes the necessity of approximations, the restriction to systems where initial con-
ditions lead to unique solutions, and the restriction to controllable systems. For that purpose, we
algorithmically construct LODE-GPs, a novel class of GPs whose realizations strictly follow a given
system of homogenuous linear ODEs with constant coefficients.

We sketch our approach and successfully test it on systems of differential equations. The LODE-GP
strictly satisfies the ODEs and outperforms GPs by several magnitudes in its precision. We also
discuss a brief comparison against the LFM models.

2 Constructing a GP for differential equations

We introduce LODE-GPs, a class of GPs with realizations dense in the space of solutions of linear
ODEs with constant coefficients. This ensures that LODE-GPs produce all possible solutions to the
ODEs and nothing but solutions for the ODEs. All this is guaranteed to be strictly accurate.

Our construction uses the application of an operator matrix, which formally is the pushforward op-
eration of an operator matrix B on the GP g as B∗g = GP(Bµ(x), Bk(x, x′)(B′)T ) Berlinet and
Thomas-Agnan [2011], where B′ denotes the operation of B on the second argument of k(x, x′)
[Lange-Hegermann, 2021, Lemma 2.2]. The matrix B induces the strong bias such that all realiza-
tions lie in the image of B. This pushforward is typical for applications in differential equations
Jidling et al. [2017], Lange-Hegermann [2018, 2021] or geometry Hutchinson et al. [2021].

Further we use the Smith Normal Form (SNF) Smith [1862], Newman [1997], which is a normal
form for a matrix A ∈ R[x]m×n over polynomial ring R[x], s.t. U ·A ·V = D. Here, D ∈ R[x]m×n

is a diagonal matrix of same size as A and base change matrices U ∈ R[x]m×m and V ∈ R[x]n×n

are invertible square matrices, i.e. det(U), det(V ) ∈ R\{0} Göllmann [2017], Cluzeau et al. [2011].
Algorithms to construct the SNF are implemented in computer algebra systems such as e.g. Maple
Maplesoft, a division of Waterloo Maple Inc.. and SageMath The Sage Developers [2021], a free and
open source Python library for computer algebra. Since the SNF exists for matrices over polynomial
rings over any field, we can compute it over a polynomial ring over the function field R(a1, . . . , ak).
Hence, we can model differential equations containing parameters a1, . . . , ak.

Consider a system of linear homogenous ordinary differential equations with constant coefficients

A · f(t) = 0 (1)

with operator matrix A ∈ R[∂t]m×n determining the relationship between the smooth functions
fi(t) ∈ C∞(R,R) of f(t) = (f1(t) . . . fn(t))

T . For such systems our main result holds.
Theorem 1. (LODE-GPs) For every system as in Equation (1) there exists a GP g, such that the set
of realizations of g is dense in the set of solutions of A · f(t) = 0. 1

Our construction creates a GP as g ∼ V∗h = GP(0, V · k · V ′), with h a suitable GP prior, V a base
change matrix from the SNF and V ′ = V T the operation applied on the second kernel entry.

3 Experimental evaluation

We demonstrate the effectiveness of LODE-GPs, by constraining a LODE-GP using a three tank
system and train it on 25 evenly spread points in [1, 6], similar to solving an initial value problem.

1For the proof of the theorem we refer the reader to the accepted full paper version of this work.
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Figure 1: (left) A sketch of the three tank system and (right) a solution of the system.
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Figure 2: The posterior LODE-GP models for the three tank system, trained on noisy data. The
black stars indicate the noisy datapoints, the red line is the solution to the ODEs, the blue dashed
line is the LODE-GPs posterior mean, the transparent blue area is the 2σ confidence interval.

The approach of Lange-Hegermann [2018] is not applicable to this uncontrollable example. The
only other method that can deal with our class of differential equations is Alvarez et al. [2009]2, and
is discussed in Section 3.2, in the following we compare our model mainly to classic GPs.

Our comparison includes the error in satisfying the ODEs, specified by the median error the GPs
posterior mean function has in satisfying the ODEs at evenly spread points, where we calculate
derivatives through finite differences. Training and evaluation is repeated ten times in each experi-
ment using a GPyTorch Gardner et al. [2018] implementation of our LODE-GP construction with
SageMath The Sage Developers [2021] to symbolically calculate the SNF.

3.1 Three tank system - Non-controllable

We use a non-controllable fluid system where the water level in three tanks is changed by two pipes.
The system is non-controllable due to pipes’ overlap over the center tank, whose changes directly
affect the other tanks. This system requires multiple non-zero covariance functions in the latent GP
to describe both the non-controllable subsystem and the two degrees of freedom.

We use the following solution to the system of ODEs (see Figure 1) to generate 25 datapoints, to
which we add white noise with standard deviation of 10% of the maximal signal.

f1(t)
f2(t)
f3(t)
u1(t)
u2(t)

 =


exp(− t

2 )
exp(− t

4 )
exp(− t

4 )− exp(− t
2 )

− exp(− t
2 )

2

− exp(− t
4 )

4 +
exp(− t

2 )

2

 (2)

Training is repeated 20 times for 300 iterations using adam Kingma and Ba [2015], which resulted in
a median loss of -0.974, similarly to a standard GP which had a loss of -0.949. The main difference
is the error in satisfying the ODE via finite differences to estimate derivatives, where the LODE-GP
scored a median error of 1e−5, whereas the GP had an error of 0.040, which is several magnitudes
higher. This comparison shows that the LODE-GP, as proclaimed, strictly follows the given ODE.
Further, this shows that it can handle large, non-controllable systems of ODEs, despite high noise.

2Most probabilistic ODE solvers are not applicable to systems with free functions in their solution set, with
the exception of Schmidt et al. [2021], which can only estimate free functions of parameters.
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Figure 3: The posterior LODE-GP models for the three tank system, trained on noisy data. The
black stars indicate the noisy datapoints, the red line is the solution to the ODEs, the blue dashed
line is the LODE-GPs posterior mean, the transparent blue area is the 2σ confidence interval.

3.2 Three tank system - Comparison to LFM

We compare our LODE-GP with the LFM introduced by Alvarez et al. [2009]. To do so we
set the variables from Equation 3 in Alvarez et al. [2009] as follows: Dq = 0, Bq = 0,

Srq =

[
−1 −1 0
0 −1 −1

]T
. We calculate the covariance function as the solution of the integral

k =
∫ t2
0

∫ t1
0

exp−(x1−x2)
2

dx1dx2, effectively setting the parameters ℓ = 1 and σ = 1. Following
the steps of Alvarez et al. [2009], we get a GP that can estimate the solution of the three tank ODEs.

The resulting GP marginalizes the (in their model considered) latent function u1 and u2 and only
considered the three data channels f1, f2, and f3. To calculate the ODE error, we inserted the
original data for the channels u1 and u2 into the calculation. For a fair comparison with our LODE-
GP, we also marginalize u1 and u2 there. Similarly as for the LFM, we have set ℓ = 1 and σ = 1.

The resulting ODE errors of the two models are as shown in Table 1. The performance of the
marginalized LODE-GP is better but comparable to the LFM. The performance of the full LODE-
GP, having learned all 5 channels and also set all lengthscales and signal variances to 1, shows a
signifcant increase in performance. Thus we conclude our LODE-GP is at least as good as the LFM.

Table 1: The ODE error of the LFM, the small LODE-GP, and the full LODE-GP. Smaller is better.

ODE 1 error ODE 2 error ODE 3 error

(marginalized) LFM 0.042816 0.507017 0.013084

marginalized LODE-GP 0.031331 0.025065 0.008595

full LODE-GP 1.210e-05 1.285e-05 1.081e-05

3.3 Three tank system - Non-system data

In an ablation we train on data which is not a solution to the ODEs. We take the system solution and
modify the first coefficient of most equations up to factors of 3. This changes the ODE error of the
generated data from 1.33e−05 to 0.098. As above, we also add 10% noise for training.

Despite the ODE error of the non-system training data, the LODE-GP still strictly follows the ODE
with an ODE error of 9.64e−05. But we observe that the median loss over 20 full trainings is
relatively high with 0.025. From the posterior plot (see Figure 3) we can see how much the mean of
the LODE-GP deviates from the noise-free training data. When we compare this to the loss for the
LODE-GP on the actual system data, we see that even a small deviation from the system’s solution
leads to drastically worse training results. From this we conclude that the LODE-GP is useful to
recognize non-system data via the corresponding training loss, despite noise as high as 10%.

4 Conclusion

In this paper we have introduced LODE-GPs, a class of covariance functions for GPs such that their
realizations strictly follow a given system of linear homogeneous ODEs, up to numerical precision,
which we demonstated in examples. Additionally, we performed an ablation to show the potential
to detect data that doesn’t satisfy the given ODEs, with just 25 datapoints.
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