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Motivation BO for Multi-Objective Optimization

Using Bayesian Optimization (BO) to propose a solution for B(Q. A framework to optimize expensive black-box functions
the expensive black-box multi-objective optimization problem including three main elements:

with constraints when the domain practitioner has preferences 3 Qtatistical models: as a prior for the functions.

over specific objectives. > Acquisition function: score the utility of evaluating input x
» Optimization procedure: select the best input for evaluation

objectives

i oo e rng L) <)oy Advantages of PAC-MOO
c1(x) .. c,(x) > Able to handle preferences over all black-box functions
constraints > Able to find feasible regions in the input space
» Scalable for high-dimensions via output space entropy search

Drawbacks of Existing Methods » Tight approximation with closed-form expression
» Unable to handle preferences

> Unable to optimize expensive function in minimal iterations PAC-MOO Acquisition Function

» Unable to find feasible regions in the design space. » The expensive black-box objective and constraints functions
are defined as F = {fy,...,fx}and C = {cq, ..., c.}.

Expensive Blackbox Functions

T

Preference-Aware Constrained Multi-Objective

Bayesian Optimization (PAC-MOO) > S is the number of samples, yi(x) = = G_l_ (‘; i)(x), where [ €

» Selects the candidate input x for evaluation that maximizes F U C. ® and ¢ are the p.d.f and c.d.f of a standard normal
the information gain about the optimal Pareto front ¥* distribution, respectively.

» Equivalent to expected reduction in entropy over the Pareto
front ¥* LN vs  YEei) i

» Relies on a computationally cheap and low-dimensional AF(i,x) = Xs=1 20 (yi(x)) I (ys (x))
m.k<m.d distribution, where k 1s the number of objectives Upyref (X) = Y cpue DiXAF (i, %) s.t. Y cpue Py = 1

» Includes a convex combination of the information gain
about the output of all objectives and constraints.

Analog Circuit Simulator
Evaluate the functions {f;, ..., fx,C1,...,CL} at X;

Return Ve = {yfl; "':ny) }’cl» '”yCL}

Objective and constraint evaluations: y; Xt : Selected design for evaluation

Analog Circuit Desi%n SpaceX | ), Update Statistical Models: Select x; that maximizes the “ Pareto front of designs
xe€x, XcR = = My, My, -, My, and acquisition function Optimal
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x is a design variable vector S —F M, M, , M, Xy = argmax a(x)
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Preferences over objectives p; . o s s $
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. 1 E2s e EKHL fronts Y, via cheap MOO over function for PAC-MOO with sl @ .
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Results and Discussion e . g:: -
> We use two analog circuit design £ 71;:;39’": S 2. R ===
benchmarks named SCVR and HCR § H = S 81l A O VUV SV VY
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higher efficiencies.

» Assigning preferences does not
significantly reduce the hypervolume
performance of the multi-objective
solver unless an wunusually high
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