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I Overview

Adaptive sampling can improve statistical
power of experiments.

Standard adaptive algorithms (e.g. bandits) are
narrowly designed for unit-level reallocation

However, unit-level reallocation is hard!
* Delayed feedback
* Engineering cost

Modeling real-world experiments, we consider
* Batch evaluations of treatments

* Limited number of reallocation epochs

* Low signal-to-noise for broad KPIs

Main contributions

* adaptive policies with flexible batches
* scalable optimization-based algo

* near-optimal for the # of reallocations
* canincorporate prior knowledge.

| Model

Find best option out of K treatment arms

* Treatment reward R, with mean 1,

* Few reallocation epochs (T), each with
flexible batch sizes

* Choose allocation Ty € Ay at each epoch t

Goal: minimize Bayes Simple Regret, the
optimality gap of final selection compared to
the best arm, averaged over a prior over means

We take a prior over arm means (possibly from
prior experiments), and pick the arm with the
highest posterior mean after T epochs

Note: Prior only required on the gaps between
means, not parameters of the reward
distribution. Prior only informs experimental
design; we take a frequentist view to inference

I Gaussian Sequential Experiment

Challenge: How does the sampling policy affect uncertainty?

* The more one samples an arm, the more precise the measurement
* When we aggregate the samples in a batch, the measurement can be
approximated by a normal with variance ~ n;&.
* Experimenter observes a sequence of these measurements ->
Gaussian Sequential Experiment
Batch 1

Batch 2 Batch 3

Theorem: This picture is a good approximation for large batches.

Assuming normal prior N (i 4, 09 o) OVer arm means, posterior
beliefs in the Gaussian sequential experiment follows a Markov
Decision Process (MDP) with known transitions:
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The more one samples an arm, the more one’s beliefs can change:
As m — 1, variance of update increases to o2
As  — 0, variance of update decreases to 0, no update in beliefs
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| Atgorithm

* Apolicy m = {m;(us, 0.)} determines the allocation based on current beliefs

summarizing measurements seen so far
* Minimizing Bayes simple regret is equivalent to

policy affects

Q-functionatt=0  fyture beliefs

I'4
Qg (llo, 0’0) = ]E70r [ma.x I"/T,arm]
N~ arm
}or arm with highest posterior mean
R at the end of the experiment

posterior mean

Algo 1: Policy Gradient

* Parameterize the policy my = {nf (e, 0¢)} using a neural network

« Directly optimize the objective by stochastic gradient descent on 6:
6 < 6+ aVyQq° (g, 0p)

Algo 2: Iterated Static Optimization (Q-myopic):
* Atepocht, solve for the best static allocation m; over remaining batches.

m(uy, o) = argmax E¢' [max pr, grm]-
mEA arm

Theorem: Q-myopic obtains lower regret than any non-adaptive allocation,
including Uniform, and the static allocation problem is strongly concave for
T —t large.

I Results

K =10 arms, B = 100 samples per batch.

Left: Bernoulli rewards, Beta prior.
* Achieves strong improvement over uniform and standard adaptive algos
* Despite small effective batch size.

Right: Gumbel rewards, Gamma prior.

* Each bar is a different reward measurement noise level.
* Achieves strong improvements over uniform despite large measurement

noise, other policies struggle to eliminate arms
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