Adaptive Experimentation at Scale

Ethan Che and Hongseok Namkoong Columbia Business School

Overview

Adaptive sampling can improve statistical power of experiments.

Standard adaptive algorithms (e.g. bandits) are narrowly designed for unit-level reallocation

However, unit-level reallocation is hard!

- Delayed feedback
- Engineering cost

Modeling real-world experiments, we consider

- Batch evaluations of treatments
- Limited number of reallocation epochs
- Low signal-to-noise for broad KPIs

Main contributions

Model

- adaptive policies with flexible batches
- scalable optimization-based algo
- near-optimal for the # of reallocations
- can incorporate **prior** knowledge.

Gaussian Sequential Experiment

Challenge: How does the sampling policy affect uncertainty?

- The more one samples an arm, the more precise the measurement
- When we aggregate the samples in a batch, the measurement can be
- approximated by a normal with variance $\sim \pi_{t,a}^{-1}$. Experimenter observes a sequence of these measurements ->

Theorem: This picture is a good approximation for large batches.

Assuming normal prior $N(\mu_{0,a}, \sigma_{0,a})$ over arm means, posterior beliefs in the Gaussian sequential experiment follows a Markov Decision Process (MDP) with known transitions:

The more one samples an arm, the more one's beliefs can change: As $\pi \to 1$, variance of update increases to σ^2

As $\pi \to 0$, variance of update decreases to 0, no update in beliefs

Algorithm

- A policy $\pi = \{\pi_t(\mu_t, \sigma_t)\}$ determines the allocation based on current beliefs summarizing measurements seen so far
- · Minimizing Bayes simple regret is equivalent to

Q-function at t = 0 policy affects
future beliefs posterior mean
$$Q_0^{\pi}(\mu_0, \sigma_0) = \mathbb{E}_0^{\pi}[\max_{\text{arm}} \mu_{T,\text{arm}}]$$
arm with highest posterior mean

at the end of the experiment

Algo 1: Policy Gradient

- Parameterize the policy $\pi_{\theta} = \{\pi_t^{\theta} (\mu_t, \sigma_t)\}$ using a neural network
- Directly optimize the objective by stochastic gradient descent on θ :

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} Q_0^{\pi_{\theta}}(\mu_{\theta}, \sigma_{\theta})$

Algo 2: Iterated Static Optimization (Q-myopic):

• At epoch t, solve for the **best static allocation** π_t over remaining batches. $\pi_t(\mu_t, \sigma_t) = \arg \max_{\pi \in \Lambda} E_t^{\pi} [\max_{arm} \mu_{T,arm}].$

Theorem: Q-myopic obtains lower regret than any non-adaptive allocation, including Uniform, and the static allocation problem is strongly concave for T - t large.

Results

K = 10 arms, B = 100 samples per batch.

Left: Bernoulli rewards, Beta prior.

- Achieves strong improvement over uniform and standard adaptive algos
- Despite small effective batch size.

Right: Gumbel rewards, Gamma prior.

- · Each bar is a different reward measurement noise level.
- Achieves strong improvements over uniform despite large measurement noise, other policies struggle to eliminate arms

Find best option out of *K* treatment arms

- Treatment reward R_a with mean μ_a
- Few reallocation epochs (T), each with flexible batch sizes
- Choose allocation $\pi_t \in \varDelta_{\mathit{K}}$ at each epoch t

Goal: minimize **Bayes Simple Regret**, the optimality gap of final selection compared to the best arm, averaged over a prior over means

We take a prior over arm means (possibly from prior experiments), and pick the arm with **the highest posterior mean** after T epochs

Note: Prior only required on the gaps between means, not parameters of the reward distribution. Prior only informs experimental design; we take a frequentist view to inference

