
Adaptive sampling can improve statistical 
power of experiments.

Standard adaptive algorithms (e.g. bandits) are 
narrowly designed for unit-level reallocation

However, unit-level reallocation is hard!
• Delayed feedback
• Engineering cost

Modeling real-world experiments, we consider
• Batch evaluations of treatments
• Limited number of reallocation epochs
• Low signal-to-noise for broad KPIs
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Overview

Model

Find best option out of 𝐾 treatment arms
• Treatment reward 𝑅! with mean 𝜇!
• Few reallocation epochs (T), each with 

flexible batch sizes
• Choose allocation 𝛑𝐭 ∈ 𝛥# at each epoch t

Goal: minimize Bayes Simple Regret, the 
optimality gap of final selection compared to 
the best arm, averaged over a prior over means

We take a prior over arm means (possibly from 
prior experiments), and pick the arm with the 
highest posterior mean after T epochs

Gaussian Sequential Experiment

• The more one samples an arm, the more precise the measurement
• When we aggregate the samples in a batch, the measurement can be 

approximated by a normal with variance ∼ 𝜋$,!&'.
• Experimenter observes a sequence of these measurements -> 

Gaussian Sequential Experiment

Algorithm

Results

Challenge: How does the sampling policy affect uncertainty?

Assuming normal prior 𝑁(𝜇(,! , 𝜎(,!) over arm means, posterior 
beliefs in the Gaussian sequential experiment follows a Markov 
Decision Process (MDP) with known transitions:

Theorem: This picture is a good approximation for large batches.

Main contributions
• adaptive policies with flexible batches
• scalable optimization-based algo
• near-optimal for the # of reallocations
• can incorporate prior knowledge.

• A policy 𝜋 = {𝜋$(𝜇$ , 𝜎$)} determines the allocation based on current beliefs 
summarizing measurements seen so far

• Minimizing Bayes simple regret is equivalent to

Algo 1: Policy Gradient
• Parameterize the policy 𝜋) = {𝜋$) (𝜇$ , 𝜎$)} using a neural network
• Directly optimize the objective by stochastic gradient descent on 𝜃:

𝜃 ← 𝜃 + 𝛼∇)𝑄(
*!(𝜇) , 𝜎))

Algo 2: Iterated Static Optimization (Q-myopic):
• At epoch t, solve for the best static allocation 𝜋$ over remaining batches.

𝜋$ 𝜇$ , 𝜎$ = argmax
*∈,

𝐸$* [max!-.
𝜇/,!-.].
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Theorem: Q-myopic obtains lower regret than any non-adaptive allocation, 
including Uniform, and the static allocation problem is strongly concave for 
𝑇 − 𝑡 large. 

𝐾 = 10 arms, B = 100 samples per batch.

Left: Bernoulli rewards, Beta prior. 
• Achieves strong improvement over uniform and standard adaptive algos
• Despite small effective batch size.

Right: Gumbel rewards, Gamma prior. 
• Each bar is a different reward measurement noise level. 
• Achieves strong improvements over uniform despite large measurement 

noise, other policies struggle to eliminate arms

Note: Prior only required on the gaps between 
means, not parameters of the reward 
distribution. Prior only informs experimental 
design; we take a frequentist view to inference

The more one samples an arm, the more one’s beliefs can change:
As 𝜋 → 1, variance of update increases to 𝜎0
As 𝜋 → 0, variance of update decreases to 0, no update in beliefs


