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Abstract

In typical experimentation paradigms, reallocating measurement effort incurs high
operational costs due to delayed feedback, and infrastructural and organizational
difficulties. Challenges in reallocation lead practitioners to employ a few realloca-
tion epochs in which outcomes are measured in large batches. Standard adaptive
experimentation methods, however, do not scale to these regimes as they are tai-
lored to perform well as the number of reallocation epochs grows. We develop
a new adaptive experimentation framework that can flexibly handle any batch
size and learns near-optimal designs when reallocation opportunities are few. By
deriving an asymptotic sequential experiment based on normal approximations, we
formulate a Bayesian dynamic program that can leverage prior information based
on previous experiments. We propose policy gradient-based lookahead policies and
find that despite relying on approximations, our methods greatly improve statistical
power over uniform allocation and standard adaptive policies.

1 Introduction
Experimentation is the basis of scientific decision-making for engineering solutions, business products,
and policy-making. As engineering solutions and policy interventions become more sophisticated,
modern experiments increasingly involve many treatment options (“arms”) tested over large popu-
lations [2, 28]. For example, to improve product design, online platforms test many configurations
across millions of users, e.g., hyperparameters of an ML-driven recommendation system. In such
scenarios, treatments typically impact a small part of the overall outcome of interest, which are
typically defined using key business metrics such as revenue or user satisfaction; although any single
product improvement may yield small relative increase in revenue, absolute gains are nevertheless
substantial. The relative performance differential between arms can thus be difficult to discern even
with a large sampling budget, particularly when the population is stratified into groups [32].

Adaptive allocation of measurement effort can improve statistical power and allow reliable identifica-
tion of the optimal decision/treatment. Accordingly, adaptive methods—dubbed pure-exploration
multi-armed bandit (MAB) algorithms—have received tremendous attention since the foundational
works of Thompson, Chernoff, Robbins, and Lai [31, 6, 24, 17]. However, standard frameworks
cannot model typical experimentation paradigms in online platforms and scientific studies where
adaptive reallocation incurs high operational costs. Although a universal assumption in the MAB
literature [4, 19, 30], unit-level continual reallocation of sampling effort is often expensive or infeasi-
ble due to organizational cost and delayed feedback, especially in large-scale experiments. Even for
online platforms with advanced experimentation infrastructure designed to handle millions to billions
of units, engineering difficulties and lack of organizational incentives deter continual reallocation at
the unit level [29, 1, 3, 23].

Due to challenges associated with reallocating measurement effort, typical real-world experiments
employ a few reallocation epochs in which outcomes are measured for many units in parallel
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(“batches”) [7, 16]. Most MAB algorithms do not scale well to batch settings as they are specifically
designed to enjoy strong theoretical guarantees as the number of reallocation epochs grows [4, 19, 30].
Motivated by these challenges, we develop and analyze adaptive experimentation methods tailored
to a handful of reallocation opportunities. Our methods are near-optimal for the fixed number of
reallocation epochs and are adapted to the instance-specific measurement noise and statistical power.
Specifically, we formulate a limiting adaptive experiment based on normal approximations and
develop a dynamic program (DP) solving for the optimal sequential allocation. Our DP framework
is Bayesian and can leverage prior information constructed using the rich reservoir of previous
experiments. Computationally, we propose approximate DP methods using black-box ML models
(e.g., neural networks), including more myopic yet effective heuristics such as lookahead policies.

2 Asymptotic Sequential Experiment
Our goal is to select the best treatment arm out of K alternatives, using a small (known) number of
reallocation epochs (T ). Each experimentation epoch t = 0, ..., T − 1 involves a batch of Bt = btn
samples, where bt > 0 is a fixed and known constant (that may vary across t) and n is a scaling
parameter. If the gap in the average rewards of each arm is � 1/

√
n, adaptive experimentation

is unnecessary as the best arm can be found after only a single epoch. Conversely, if the gaps
are� 1/

√
n, then we cannot reliably learn even after many experimentation epochs; one cannot

improve upon the uniform allocation (a.k.a. randomized design or A/B testing). We thus focus on the
admissible regime where the gaps between arm rewards are Θ(1/

√
n). Upon allocating a unit to a

treatment arm a, the experimenter observes i.i.d. draws of the arm rewards Ra = ha√
n

+ εa, where
ha is an unknown “local parameter” that determines the difference between average arm rewards.
Without loss of generality, we set the baseline reward to zero. We assume the noise εa has mean
zero, and that Var(εa) = s2

a is known and constant. In particular, s2
a does not scale with n, so it is

crucial to sample arms many times to discern differences between their means ha/
√
n. Although

reward variances are typically unknown, they can be estimated from a small initial batch in practice;
empirically, the policies we consider are robust to estimation error in s2

a, and a rough estimate suffices.

Since modern organizations run hundreds of experiments, it is natural for the experimenter to have a
prior distribution h ∼ ν over the relative gaps between treatment effects. At the end of the experiment
(epoch t = T ), our goal is to minimize the Bayes simple regret Eh∼νE[ha?−hâ] the scaled optimality
gap between the selection â and the optimal arm a? averaged over the prior. To optimize the Bayes
simple regret, the experimenter uses the information collected until the beginning of epoch t to
select πt ∈ ∆K , the fraction of samples allocated to each of the K treatment arms. In general, the
reward distributions are unknown, and it is challenging to calculate posterior distributions that inform
Bayesian sampling procedures (e.g., [25]). Instead, we note the importance sampling estimator R̄nt,a
for the average reward approximately follows a normal distribution

√
nR̄nt,a :=

1

bt
√
n

btn∑
j=1

ξta,j
πt,a

Rta,j
d
 N(ha,

s2a
btπt,a

), (1)

where ξta,j is an indicator for whether arm a was pulled for unit j at time t. The allocation πt controls
the effective sample size and thus the level of uncertainty in the sample mean and the ability to
distinguish signal from noise (a.k.a. statistical power).

At each epoch t, the experimenter chooses πt and observes an independent Gaussian measurement
distributed as N(ha,

s2a
btπt

) for each arm a. We use the asymptotic Gaussian sequential experiment as
an approximation to the original batched adaptive epochs and derive near-optimal adaptive experimen-
tation methods for the asymptotic problem. While our framework allows naturally incorporating prior
information, we do not assume restrictive distributional assumptions on rewards that are required
in typical Bayesian sequential sampling approaches [26]. Instead, the likelihood function of the
aggregate rewards

√
nR̄nt,a | h is derived from the normal approximation (1). Our limiting normal

approximation coincides with typical (frequentist) inferential paradigms for confidence intervals and
power calculations. While our approach to improving statistical power is new, the corresponding
Gaussian sequential experiment (2) was previously studied in the context of robust control [22] and
attention allocation [20], and Frazier and Powell [10] studied a single epoch variant.

Based on the observation (1), our main theoretical result derives an asymptotic sequential experiment
as n → ∞. At each epoch t, the experimenter chooses πt and observes an independent Gaussian
measurement distributed as N(ha,

s2a
btπt

) for each arm a.
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Theorem 1. Let BSRT (π, ν, R̄) be the Bayes simple regret under policy π, prior ν over h, and
observation process R̄ = (R̄0, . . . , R̄T−1), which is the set of observations used by the policy to
determine the sampling allocations. Consider the asymptotic sequential experiment characterized
by observations V0, . . . , VT−1 with conditional distributions Vt|V0, . . . , Vt−1 ∼ N(h, diag(

s2a
btπt

)).
Under regularity conditions for the rewards and the policy, BSRT (π, ν,

√
nR̄n)→ BSRT (π, ν, V ).

We use the asymptotic Gaussian sequential experiment as an approximation to the original batched
adaptive epochs and derive near-optimal adaptive experimentation methods for the asymptotic
problem. While our framework allows naturally incorporating prior information, we do not assume
restrictive distributional assumptions on rewards that are required in typical Bayesian sequential
sampling approaches [26]. Instead, the likelihood function of the aggregate rewards

√
nR̄nt,a | h

is derived from the normal approximation (1). Our limiting normal approximation coincides with
typical (frequentist) inferential paradigms for confidence intervals and power calculations.

A number of works in Bayesian optimization [12, 33, 13, 14, 18, 15] and experimental design study
batched adaptive designs that alleviate the myopia of standard acquisition functions. In contrast
to this literature studying continuous design spaces, we focus on allocation of measurement effort
over a finite number of arms under limited statistical power. Our setting is characterized by limited
extrapolation between arms and a fixed, finite exploration horizon. As our approach maximizes
an expected utility function, it is intimately connected to Bayesian experimental design methods
[5, 27, 9]. Instead of optimizing expected information gain (EIG), we minimize expected simple
regret at the terminal period, a more tractable objective. While our approach to improving statistical
power is new, the corresponding Gaussian sequential experiment (2) was previously studied in the
context of robust control [22] and attention allocation [20], and Frazier and Powell [10] studied a
single epoch variant.

3 Bayesian Adaptive Experimentation
We rewrite the asymptotic sequential experiment as a Markov decision process to find the optimal
adaptive design. Our formulation is based on reparameterizing the distribution of sequential obser-
vations V0, . . . , VT−1 using posterior mean and variances defined over standard normal variables.
Formally, consider an independent Gaussian prior over the local parameters, ha ∼ N(µ0,a, σ

2
0,a),

under which the trajectory of posterior beliefs (µt,a, σ
2
t,a) follows a Markov Decision Process. Using

standard normal variables Zt,a
iid∼ N(0, 1), the “states” µt, σ2

t and “actions” πt ∈ ∆k characterize
the asymptotic sequential experiment through the following transitions

µt+1,a = µt,a + σt,a

√
btπt,aσ2

t,a

s2
a + btπt,aσ2

t,a

Zt,a and σ2
t+1,a =

(
1

σ2
t,a

+
btπt,a
s2
a

)−1

. (2)

Our goal is to minimize the Bayes simple regret, which is equivalent to maximizing
E [maxa=1,...,K µT,a] , the highest posterior mean at the end of the experiment. At epoch t, con-

ditional on the information Z0, . . . , Zt−1
iid∼ N(0, I) available—summarized via the current state

(µt, σt)—the Q-function for a policy π is given by

Qπt (µt, σt) = Eπt [max
a

µT,a] = Eπt

[
max
a

{
µt,a +

T−1∑
s=t

σs,a

√
bsπs,a(µs, σs)σ2

s,a

s2a + bsπs,a(µs, σs)σ2
s,a

Zs,a

}]
. (3)

Using dynamic programming to directly solve the policy optimization problem maxπ Q
π
0 (µ0, σ0)

is computationally intractable even for a moderate number of treatment arms and reallocation
epochs. Instead, we propose an approximate DP method based on policy gradients (PG) computed
through black-box ML models. We consider an auto-differentiable parameterized policy πθ =
{πθt }T−1

t=0 (e.g., neural networks). We aim to directly optimize the Q-function (3) using stochastic
approximation methods: we use stochastic gradient ascent over sample paths Z0, . . . , ZT−1 to update
policy parameters θ ← θ + α∇θQπθ0 (µ0, σ0). For long horizons, training the policy becomes more
difficult due to high variance in stochastic gradient estimates. We hence consider m-lookahead
policies (denoted PG-m) trained to optimize the shorter time horizon objective QπθT−m(µ0, σ0).

We also consider a simple heuristic,Q-myopic, which solves a computationally cheaper approximation
of the dynamic program by assuming non-adaptive future allocations. Instead of maximizing the Q
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(a) Relative gains over uniform allocation
for s2a ≡ 1 (above: K = 10; below:

K = 100).

(b) Relative gains over uniform allocation for
s2a ∈ { 15 , 1, 5} with T = 5 (above: K = 10; below:

K = 100).

Figure 1: Pre-limit Bayes simple regret for Gumbel rewards and Gamma(100, 100) prior

function Eπt [maxa µT,a] over policies, Q-myopic solves the open loop problem that considers future
sampling allocations that only depend on the available information (µt, σt) at time t. At each epoch t,
πt is derived by assuming that an identical allocation will be used for the remaining periods horizon re-
gardless of new information obtained in the future πQ-myopic

t (µt, σt) = argmaxπ̄∈∆K
Eπ̄t [maxa µT,a].

We again solve for the Q-myopic policy through stochastic approximation methods. Empirically, we
find that the open loop approximation provides a highly effective heuristic. One appealing feature is
that solving the open-loop problem is easier for longer residual horizons T − t. As T − t→∞, the
objective function of the open-loop problem becomes strongly concave and we can characterize the
asymptotic sampling policy explicitly from the KKT conditions.

We denote the limiting policy as πDTS, Density Thompson Sampling (DTS), as it determines the
allocation based on the partial derivatives of the Gaussian Thompson sampling probabilities. Our
result provides a novel connection between optimization-based approaches for sampling (e.g. expected
improvement [21]) and probability-matching methods (e.g. Thompson sampling [26]).

Proposition 2. Let ∆ε
K = ∆K ∩ {p : p ≥ ε} for some ε > 0. There exists t0 > 0 such that

∀T − t > t0, (
∑T−1
s=t bs)Eπ̄t [maxa µT,a] is strongly concave in π̄ ∈ ∆ε

K . Suppose for (µt, σt) there
exists t1 > t0 such that for ∀T − t > t1, πQ-myopic

t,a (µt, σt) > ε. Then as T →∞,

πQ-myopic
t,a (µt, σt)→ πDTS

a , where πDTS
a ∝ sa

(
∂

∂µa
πTS
a (µt, σt)

)1/2

4 Empirical results
Our main empirical observations inform the design of effective adaptive experimentation methods
when reallocation of sampling efforts is few and expensive. For general reward distributions, the
asymptotic Gaussian sequential experiment problem (2) provides a valuable framework for experi-
mental design, even when the scaling parameter n (batch size) is not large. Our approximate dynamic
programming policies outperform uniform allocation and even specialized algorithms (e.g., variants
of Thompson sampling [25]) that require complete knowledge of the reward distribution. We observe
the policy gradient-based policies can generalize to longer horizons than initially trained on. The
Q-myopic policy enjoys strong performance despite optimizing a lower bound of theQ function. Both
policy gradient and Q-myopic achieve more significant performance gains in harder/underpowered
experiments with high effective measurement noise s2

a/bt.

As a concrete illustration of our main findings, consider a setting with K = 10, 100 arms with
up to T = 10 batches. We consider 100 samples in each batch, where rewards follow a Gumbel
distribution with a fixed scale parameter β > 0 across all arms, implying the measurement variance

4



s2
a = π2

6 β. The location parameters µa are drawn from an independent Gamma(100, 100) prior,
which is known to the experimenter. The Gaussian sequential approximation for each batch gives
R̄nt,a ∼ N

(
µa, s

2
a/(10πt)

)
. To maintain conjugacy, we also approximate the prior with a normal

distribution with the same mean (µ0,a = 1) and standard deviation (σ0,a = 0.1). We use an adapted
version of the successive elimination (SE) algorithm [8]—a popular heuristic in practice—as a key
benchmark. In Figure 1a), policy gradient and Q-myopic achieve substantial performance gains over
uniform allocation, despite relying on normal approximations of the true reward distribution and
the prior distribution. Gains are significant even with few reallocation epochs, and grow with more
adaptivity (larger T ). In Figure 1b), these gains persist when the noise level is high, even though
standard adaptive procedures (SE) struggle to eliminate non-performant arms.
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