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Abstract

Linear-Gaussian dynamical systems (LDSs) are computationally tractable because
all latents and observations are jointly Gaussian. However, these systems are too
restrictive to satisfactorily model many dynamical systems of interest. One gener-
alization, the switching linear dynamical system (SLDS), trades analytic tractabil-
ity for a more expressive model, allowing a discrete set of different linear regimes
to model the data. Here we introduce a switching linear dynamical system with
a continuum of linear regimes that are traversed continuously in time. We call
this model a continuous switching linear dynamical system (CSLDS) and derive
efficient variational Bayesian methods for inference and model learning.

1 Introduction

Linear dynamical systems (LDSs) are fundamental to probabilistic timeseries modeling due to their
analytic tractability and the past several years have seen an increased interest in more expressive
extensions of LDSs. The most common among these is the switching linear dynamical system
(SLDS), which posits a set of discrete modes, each corresponding to a distinct LDS, with Markov
transitions between the modes [3, 7]. Several extensions of SLDS exist, including recurrent variants
that use both the discrete mode and the continuous state to determine mode dynamics [5, 6, 4].

The choice made by SLDS of maintaining a discrete set of linear regimes is computationally con-
venient given the Markov model structure of the modes. However, we note that an SLDS with a
continuum of linear regimes can also be handled in a computationally convenient way. The result-
ing model, which we call a continuous switching linear dynamical systems (CSLDS), is better suited
to modeling systems for which we expect the underlying dynamics vary smoothly in time.

The most similar model to the CSLDS in the literature is the warped autoregressive hidden Markov
model (WAR-HMM) [2]. The autoregressive (AR)-HMM can be viewed as a discrete SLDS with a
restricted observation model, which the WAR-HMM extends by associating with each discrete mode
a univariate latent variable that modulates the mode’s corresponding linear dynamics. The CSLDS,
by contrast, modulates its linear dynamics with a continuously varying multivariate latent variable
and extends the more flexible observation model of the SLDS.

2 Continuous Switching Linear Dynamical Systems

Setup Let time t = 1, . . . , T have associated observations yt ∈ RN for all t. The model has two
layers of latent variables: ηt ∈ RK for all t < T , and xt ∈ RM for all t, with M ≥ K. The
graphical model is shown in Figure 1, which has an associated joint distribution of

p(η1:T−1,x1:T ,y1:T ) = p(η1:T−1)p(x1)
∏T

t=2 p(xt|ηt−1,xt−1)
∏T

t=1 p(yt|xt) . (1)
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Figure 1: Left: Graphical model shared by the switching linear dynamical system (SLDS) and the
proposed continuous switching linear dynamical system (CSLDS). Center: A synthetic dataset was
made using continuously varying η’s which spell out “cslds,” where each setting of η corresponds
to a distinct linear dynamical regime. Right: The proposed model is able to approximately recover
the η’s from the synthetic timeseries, with more accurate results obtained for datasets with more
timepoints, T .

We choose an independent Gaussian process prior on each component of η: η(k)
1:T−1 ∼ GP(0, κk),

where κk is a given kernel. We define the initial condition prior x1 ∼ N (0, Q−1
IC ), and the interaction

between the η’s and the x’s as xt|ηt−1,xt−1 ∼ N (A(ηt−1)xt−1, [Q(ηt−1)]
−1). Lastly, we define

a linear-Gaussian observation model: yt|xt ∼ N (Cxt + b, R). In this way, the η’s control the
parameters of a linear-Gaussian state space model, producing an LDS with continuously varying
parameters. We introduce two concrete choices for A(ηt) and Q(ηt), a simplex definition that
is more consistent with the existing SLDS literature, and a factor definition that is more readily
comparable to factor analysis. The simplex definition is

s = Softmax(Bη + c) , A(η) =
∑K

k=1 s
(k)A(k) , [Q(η)]−1 =

∑K
k=1 s

(k)(Q(k))−1 , (2)

where A(k), Q(k) ∈ RM×M for k = 1, . . . ,K. The standard discrete SLDS is the limiting case
using only the linear regimes in the corners of the simplex, i.e. s is constrained to be one-hot. The
factor definition is given by

A(η) = A(0)+
∑K

k=1 η
(k)A(k) , s = Softplus(Bη+c) , [Q(η)]−1 =

∑K
k=1 s

(k)(Q(k))−1 . (3)

In this work we only consider the factor variant and leave the simplex for
consideration in future work. All told, the model parameters are θ =
{C, b, R,B, c, {A(k)}Kk=0, {Q(k)}Kk=0, {ϑk}Kk=0, QIC} where the ϑ’s denote the η GP kernel
parameters, discussed below.

Variational Inference and Learning The multiplicative interaction between the η’s in defining
the A matrices and the x’s produces a joint distribution of η’s and x’s that is not jointly Gaussian in
general, hindering analytic inference. However, we note that the x’s and y’s form a linear-Gaussian
state space model conditioned on a setting of η1:T−1. This suggests a model fitting procedure in
which the η’s are sampled from an approximate posterior, the log likelihood of the observations
conditioned on the sampled η is calculated, and the model parameters are updated by stochastic
gradient ascent.

Let q(η1:T−1;ϕ) denote an arbitrary joint distribution over the η’s with parameters ϕ that admits
sampling and density evaluation. We can lower bound the marginal observation log likelihood using
the standard evidence lower bound, or ELBO:

L(y1:T ; θ, ϕ) ≜ Eη1:T−1∼q(η1:T−1) log

[
p(y1:T ,η1:T−1)

q(η1:T−1)

]
≤ log p(y1:T ) . (4)

q(η1:T−1;ϕ) is known as an approximate posterior because the inequality becomes equality when
q(η1:T−1;ϕ) = p(η1:T−1|y1:T ; θ), the true posterior. The following sections detail choices that
allow for the efficient estimation of an ELBO, which will end up being a lower bound of the standard
ELBO in Eq. 4.
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The η Ornstein-Uhlenbeck GP We assume K independent GP priors, one for each component
of η:

η(k) ∼ GP(0, κk) , k = 1, . . . ,K (5)
with kernel κk(t, t

′) = exp(−ϑk|t − t′|) where ϑk ∈ R+. This defines a real-valued Ornstein-
Uhlenbeck process, a Markovian Gaussian process. The Markov property allows us to write the
precision matrix of a set of equally spaced observations as a tridiagonal matrix:

p


 η

(k)
1
...

η
(k)
T−1


 = N (0,Λ(ϑk)

−1), where Λ(ϑ)ij =


1

1−a2 if i = j = 0 or i = j = T − 1
a2+1
1−a2 if i = j and i /∈ {1, T − 1}

a
a2−1 if |i− j| = 1

0 otherwise

,

(6)
and a = exp(−ϑ). All together, the η’s are assumed to be drawn from a zero-mean Gaussian with
precision Λprior =

∑
k eke

⊤
k ⊗Λ(ϑk), a block-diagonal matrix with K tridiagonal (T−1)-by-(T−1)

blocks.

Conditioning the OU GPs We condition the prior OU GPs to form an approximate posterior using
precision and precision-mean pseudo-observations, which constitute ϕ, our approximate posterior
parameters: ϕ = {Λpseudo, rpseudo} where rpseudo ∈ RK(T−1) and Λpseudo ∈ RK(T−1)×K(T−1) is
diagonal. These pseudo-observations are inducing points placed at each timestep and condition the
prior GP to form the approximate posterior GP as if we had direct, uncertain observations of the η’s
at each timepoint. The approximate posterior is then taken as q(η1:T−1) ∼ N (µpost, Λ−1

post) where
µpost = Solve(Λpost, rpseudo) and Λpost = Λprior + Λpseudo. The solve operation, sampling, and log
density evaluation can all performed in time O(T ) because Λpost is tridiagonal. The KL divergence
from the η approximate posterior to its prior is available in closed form as

D(q(η1:T−1) || p(η1:T−1)) =
1
2

[
tr(ΛpriorΛ

−1
post)−K(T − 1) + µ⊤

postΛpriorµpost + log
|Λpost|
|Λprior|

]
. (7)

The log determinant term here can be computed in O(T ) time by performing block-tridiagonal
Cholesky decompositions on both Λ’s. The quadratic form can also be computed in O(T ) time
because Λprior is block-tridiagonal. Lastly, we choose to estimate the trace term using Hutchinson’s
trace estimator,

tr(ΛpriorΛ
−1
post) = Eϵ∼N (0,I)

[
ϵ⊤ΛpriorΛ

−1
postϵ

]
, (8)

where Λ−1
postϵ can be computed with an O(T ) block-tridiagonal solve operation.

Deriving the likelihood For fixed η’s and t = 1, . . . , T − 1 let At = A(ηt) and Qt = Q(ηt).
Then the precision of the x latents, cov(x1:T )

−1 = Σ−1
xx = Λxx is given by

QIC +A⊤
1 Q1A1 −A⊤

1 Q1

−Q1A1 Q1 +A⊤
2 Q2A2

. . .
. . . . . . . . .

. . . QT−2 +A⊤
T−1QT−1AT−1 −A⊤

T−1QT−1

−QT−1AT−1 QT−1


. (9)

The corresponding covariance matrix of the observations is
cov(y1:T ) = Σyy = Λ−1

yy = (C ⊗ IT )Σxx(C
⊤ ⊗ IT ) + (R⊗ IT ) . (10)

To evaluate the likelihood of the data under a Gaussian distribution with this covariance matrix, we
need efficient methods to estimate both its log determinant and evaluate the quadratic form y⊤Λyyy.
In the Appendix, we derive a log determinant bound log |Σyy| ≤ T log |R| + T tr(C⊤R−1C) and
describe an efficient computational method for the quadratic form. This results in the following
likelihood lower bound:

log p(y|η1:T−1) = −
1

2

[
logdet(Σyy) + y⊤Λyyy +NT log(2π)

]
≥ −1

2

[
T logdet(R) + T tr(C⊤R−1C) + y⊤Λyyy +NT log(2π)

] (11)

Eqs. 7 and 11 together form our ELBO objective, which can be estimated in O(T ) time.
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Figure 2: Left: Two CSLDS models were trained on six-channel, 2000 second local field potentials
recorded from two mice before an after undergoing a pharmacological intervention. Right: The
inferred η traces clearly distinguish between the dynamics before the intervention (dark purple) and
after (lighter colors).

Identifiability of η’s We assert under certain conditions, namely that the A matrices have distinct
eigenvalues and are sufficiently close to some A0, that the true η’s underlying a CSLDS are iden-
tifiable up to linear transformation in the slow-η limit. Here we present a brief logical sketch and
in Figure 1 we present empirical evidence of this claim, leaving a formal proof for future work. In
the slow-η limit, we may window the y timeseries and fit a separate LDS model for each window
corresponding to a specific η ∈ RK . In general, the dynamics matrix A in an LDS is only identifi-
able up to matrix similarity [1], which reduces to identifiability up to eigenvalues given the distinct
eigenvalue assumption. Under the small perturbation assumption, we can match eigenvalues across
windows unambiguously and identify a subspace of eigenvalues. Lastly, in this low perturbation
regime, we can use first-order eigenvalue perturbations to confirm that the true η’s are given by a
linear transformation of coordinates in this eigenvalue subspace.

3 Experiments

Synthetic Data As a test of the proposed model, we asked whether the CSLDS could recover
ground-truth η’s in a synthetic dataset. First, we drew “cslds” in cursive (Figure 1, center) to rep-
resent the time-evolution of a 2-dimensional η. Multiple datasets were created that divided the
“cslds” path into T = 3 ·103, 104, 3 ·104, and 105 timesteps. The ground-truth model was randomly
initialized with K,M,N = 2 and held fixed between experiments. Given the discussion on the
identifiability of the η’s above, we expect that we should be able to infer the correct η’s up to linear
transformation with a large amount of data. We fit a CSLDS model to each timeseries and confirmed
that it was able to approximately resconstruct the ground-truth η’s (Figure 1, right, shown rotated to
best match the ground-truth η’s).

Modeling Multichannel Neural Data We next used CSLDS to model multichannel local field
potential data from two freely behaving mice before and after a pharmacological intervention, ask-
ing what effect, if any, the intervention has on the inferred η’s. The data for each mouse comprises
6 channels and 2000 seconds sampled at 50Hz for 105 total timesteps and the CSLDS model pa-
rameters are K = 2 and M = 4. The inferred η’s for both recordings, shown in Figure 2, clearly
distinguish the times before the intervention (dark purple) and after the intervention (lighter colors).

4 Conclusion

We propose the continuous switching linear dynamical systems (CSLDS), which traverses a contin-
uum of linear dynamical systems continuously in time. The model admits computationally feasible
methods for inference and learning, allowing us to recover ground-truth latents and model neural
recordings in mice. One particularly promising direction of future work is to use the CSLDS to
study transitions between nominally discrete states, for example, by modeling the neural dynamics
underlying sleep state transitions.
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ELBO details

This section addresses details necessary to compute the CSLDS ELBO objective efficiently.

An efficient log determinant bound Here we derive an upper bound for the log determinant of the
data covariance, Σyy. We begin with a derivation that applies generally to the “GP factor analysis”
literature, and can be found in [8]. In what follows, we prioritize the common case M < N ≪ T .
Applying the Woodbury matrix inversion lemma to Eq. 10, we get

Λyy = (R−1 ⊗ IT )− (R−1C ⊗ IT )(L
−⊤L−1 + C⊤R−1C ⊗ IT )

−1(C⊤R−1 ⊗ IT )

= (R− 1
2 ⊗ IT )(INT −A⊤B−1A)(R− 1

2 ⊗ IT ) ,
(12)

where LL⊤ = Σx, A = L⊤(C⊤R− 1
2 ⊗ IT ), and B = I + AA⊤. We can then simplify the log

determinant:

logdet(Λyy) = 2 logdet(R−1/2 ⊗ IT ) + logdet(I −A⊤B−1A)

= −T logdet(R) + logdet(B −AA⊤)− logdet(B)

= −T logdet(R) + logdet(I)− logdet(B)

= −T logdet(R)− logdet(I + L⊤(C⊤R−1C ⊗ IT )L)

⇒ logdet(Σyy) = T logdet(R) + logdet(I + L⊤(C⊤R−1C ⊗ IT )L)

(13)

Note that the matrix in the second logdet term is MT -by-MT , so a naive logdet calculation would
take time O(M3T 3), which is an improvement on the O(N3T 3) required for the full NT -by-NT
matrix, but still prohibitive for large T . Instead of performing an exact log determinant calculation,
we deviate from the GP factor analysis approach and opt to upper bound the log determinant using
the identity logdet(A) ≤ tr(A− I):

logdet(Σyy) ≤ T logdet(R) + tr(L⊤(C⊤R−1C ⊗ IT )L)

= T logdet(R) +
∑
m

[C⊤R−1C]mm tr(LmL⊤
m)

= T logdet(R) +
∑
m

[C⊤R−1C]mm tr(Σxx,m)

= T ( logdet(R) +
∑
m

[C⊤R−1C]mm)

= T [ logdet(R) + tr(C⊤R−1C)]

(14)

Note that tr(Σxx,m) = T relies on our choice of kernel, which guarantees κ(t, t) = 1. If we restrict
R to be diagonal, this log determinant bound can be calculated in time O(MN), which is notably
independent of T , the number of timepoints.

In what situations is this bound tight? It can be easily checked that the bound logdet(A) ≤ tr(A−I)
is tight when A = I . The bound can be tightened in a flexible way by using a lower triangular matrix
W . We have:

logdet(A) = logdet(WW⊤A)− 2 logdet(W ) ≤ tr(WW⊤A− I)− 2 logdet(W ) . (15)

The log determinant of W can be calculated efficiently because W is triangular. The bound is tight
when WW⊤A = I , and for a positive definite A, which is our use case, we are guaranteed the
existence of a W such that WW⊤A = I . This suggests an optimization procedure in which W
is a free parameter to be optimized that keeps the log determinant bound tight during the course of
model training. We leave an implementation and evaluation of this adaptive log determinant bound
strategy to future work.

Quadratic form calculation A naive calculation of the quadratic form y⊤Λyyy takes time
O(N2T 2), which is prohibitive for large T . The key step is to perform matrix/vector products
with

Λyy = (R− 1
2 ⊗ IT )(INT −A⊤B−1A)(R− 1

2 ⊗ IT ) . (16)
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Multiplication with the first and third terms are easy. Remember A = L⊤(C⊤R− 1
2 ⊗ IT ). Ma-

trix/vector multiplication with (C⊤R− 1
2 ⊗ IT ) is easy, but we do not have direct access to L⊤.

However, we can efficiently find L−⊤L−1 = Λxx by a Cholesky decomposition because Λxx is
block-tridiagonal. Then we have L⊤b = Solve(L−⊤, b), with an efficient block-bidiagonal solve.
Therefore, Ab can be efficiently calculated as Solve(L−⊤, (C⊤R− 1

2 ⊗ IT )b).

Now for B−1b. We can write B = L⊤[C⊤R−1C ⊗ IT + Λxx]L. Then

B−1 = L−1[C⊤R−1C ⊗ IT + Λxx]
−1L−⊤ , (17)

and as we saw before, matrix/vector multiplication with L−1 and L−⊤ is efficient. If P is the permu-
tation matrix that switched the order of the Kronecker product expansion, then P (C⊤R−1C ⊗ IT )
is block-diagonal with T separate C⊤R−1C blocks and PΛxx is symmetric block-tridiagonal with
diagonal blocks. It follows that P [C⊤R−1C ⊗ IT +Λxx] is block-tridiagonal with 3T − 2 separate
M -by-M blocks. Solve operations can be performed efficiently with block tridiagonal matrices,
O(M3T ) in this case. Note the permutation P can be applied as a O(1) reshaping operation as
opposed to a O(M2T 2) matrix/vector multiplication.

To summarize, the quadratic form calculation is given by:

1. b← (R− 1
2 ⊗ IT )y

2. b̃← Solve(L−⊤, (C⊤R− 1
2 ⊗ IT )b)

3. b̃← P⊤Solve(P [C⊤R−1C ⊗ IT + Λxx], b̃)

4. b̃← (R− 1
2C ⊗ IT )Solve(L−1, b̃)

5. b← b− b̃

6. b← (R− 1
2 ⊗ IT )b

7. Return y⊤b

ELBO estimation The complete CSLDS objective function is

−1

2

[
T logdet(R) + T tr(C⊤R−1C) + y⊤Λyyy +NT log(2π)

]
−D(q(η1:T−1) || p(η1:T−1))

≤ L(y1:T ; θ, ϕ) ≤ log p(y1:T ) ,
(18)

where the KL divergence D(q(η1:T−1) || p(η1:T−1)) is given in Eq. 7. This is a lower bound to the
standard ELBO L(y1:T ) from Eq. 4 (due to the Σyy log determinant bound in Eq. 14), which is in
turn a lower bound to the observation marginal log likelihood log p(y1:T ).
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