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Abstract

Stochastic variational Gaussian processes (SVGP) scale Gaussian process inference
to large datasets through inducing points and stochastic training. However, the
training process involves hard multimodal optimization, and often suffers from
slow and suboptimal convergence when initializing inducing points directly from
training data. We provide a better initialization of inducing points from kernel-
based least squares fitting. We show empirically that our approach consistently
reaches better prediction performance. The total time cost of our method, including
initialization, is comparable to the standard SVGP training.

1 Introduction

Gaussian processes (GP) are a popular probabilistic learning framework, especially when inference
with uncertainty estimation is necessary [12, 17, 26, 27, 31]. However, exact GP inference costs
O(n3) in computation and O(n2) in storage for n training points. Stochastic variational Gaussian
processes (SVGP) have recently shown success in scaling up GP inference on large datasets [8];
the fundamental idea lies in variational GP inference [28]. Variational GPs introduce a small set
of inducing points and corresponding inducing values as a "fake" training dataset, and assume
that the inducing data is sufficient for inference. The variational GP model is then trained by
minimizing the distance between the true GP posterior and the approximate GP posterior, which
involves optimizing the variational Evidence Lower Bound (ELBO) [9, 10]. Furthermore, the SVGP
model decomposes the log likelihood term of ELBO into a sum over training labels, thereby enabling
stochastic optimization. However, the stochastic training of variational ELBO, which contains
model hyperparameters, inducing parameters, and variational distribution parameters, involves hard
multimodal optimization problems which have many local minima, and often suffers from slow and
suboptimal convergence.

We propose a better initialization method of the inducing points, and get a better initialization of the
variational parameters as well as kernel hyperparameters as by-products. The key observation is that
the kernel-based least squares function approximation shares the same mean predictor formulation as
variational GPs. In the kernel-based least squares function approximation setting, the regularized least
squares error can be viewed as a function of the inducing points via variable projection. Therefore,
optimizing inducing points boils down to solving a nonlinear least squares problem, which can
be solved by standard numerical methods. We demonstrate the efficiency of our initialization in
SVGP training by comparing to standard initialization methods, such as random subsampling and
K-means initialization, on a variety of real datasets. With our initialization, we show better prediction
performance consistently on various real datasets. The total time cost, including initialization
computation, is comparable to the standard SVGP training.
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2 Background

A Gaussian process (GP) is a distribution over function values, denoted as f ∼ GP(µ(x), k(x,x′)),
where µ is the mean function and k is the covariance function [22]. We assume familiarity with
GPs and briefly introduce them for notational clarity. Given data points X = {xi}ni=1 ∈ Rn×d and
function observations f = {f(xi)} ∈ Rn, a GP prior assumes a multivariate normal distribution f ∼
N (µX,KXX), where µX,KXX are the mean values and covariance matrix at data X. Conditioning
on noisy observations y = f + ϵ, where ϵ ∼ N (0, σ2I), the posterior distribution at a new data
point x∗ is p(f∗|y) = N (µ∗,Σ∗∗), where µ∗ = µ(x∗) + Kx∗X(KXX + σ2I)−1(y − µX) and
Σ∗∗ = k(x∗,x∗)−Kx∗X(KXX + σ2I)−1KT

x∗X. If we assume a prior mean of zero, the posterior
mean µ∗ becomes µ∗ = Kx∗X(KXX + σ2I)−1y = Kx∗Xc =

∑n
i=1 cik(x

∗,xi), where c =
(KXX + σ2I)−1y. We generally estimate model hyperparameters such as kernel lengthscale l and
noise σ by Maximum Likelihood. The log marginal likelihood function [22] can be optimized by
standard numerical solvers such as LBFGS [20] with a cost of O(n3) flops for each evaluation.

2.1 Stochastic Variational GP (SVGP)

Variational GPs improve scalability of standard GPs by introducing a set of inducing points U =
{ui}mi=1 with associated inducing values g = {gi}mi=1 to represent function values at U under the
same GP prior assumption [28, 9, 8]. Therefore, the inference at a new point x∗ becomes p(f∗|y) =∫
p(f∗|f ,g)p(f |g,y)p(g|y)dfdg. If we assume the inducing data is sufficient for inference, i.e., f∗

and f are independent conditioning on g, we have p(f∗|y) ≈
∫
p(f∗|g)p(g|y)dg. Further assuming

a variational distribution q(g) ∼ N (m,S) that approximates the posterior p(g|y), the inference for
the function value f∗ at x∗ is

p(f∗|y) ≈ q(f∗) = N (Kx∗UK−1
UUm,Kx∗x∗ +Kx∗U(B −K−1

UU)KUx∗), (1)

where B = K−1
UUSK−1

UU. The variational distribution q(g) = N (m,S) is then learned by maximiz-
ing the variation ELBO [9, 10], which is a lower bound on the log marginal likelihood:

log p(y) ≥ Eq(f)[log p(y|f)]− KL[q(g)||p(g)], (2)

where q(f) =
∫
p(f |g)q(g)dg, and KL[q(g)||p(g)] is the Kullback-Leibler (KL) divergence [14].

SVGP further decomposes ELBO as a sum of loss over training labels and therefore enables stochastic
gradient descent (SGD) [24] training:

ELBOSVGP =

n∑
i=1

{
logN (yi|µf (xi), σ

2)− σf (xi)
2

2σ2

}
− KL [q(g)||p(g)] ,

where µf (xi), σf (xi)
2 are the predicted mean and variance from Eq. 1, respectively. To achieve het-

eroscedastic modeling and improve predictive variances, the Parametric Gaussian Process Regressor
(PPGPR) [11] proposes a similar stochastic ELBO loss for SVGP:

ELBOPPGPR =

n∑
i=1

logN (yi|µf (xi), σ
2 + σf (xi)

2)− KL[q(g)||p(g)].

We empirically apply our initialization method on both ELBOPPGPR (SVGP) and ELBOPPGPR
(PPGPR) training in Section 4. Given inducing point locations, the analytical optimal variational
distribution can be obtained by differentiating Eq. 2 [28]:

q∗(g) = N (m̃, S̃) = N (σ−2KUUΣKUXy,KUUΣKUU), (3)
where Σ = (KUU+σ−2KUXKXU)−1. Plugging m̃ back into the variational GP inference in Eq. 1,
the predicted mean is

µGP = Kx∗U(σ2KUU +KUXKXU)−1KUXy := Kx∗UcGP . (4)

3 Kernel-based Least Squares

Given data points X = {xi}ni=1 ∈ Rn×d and noisy observations y = {yi} ∈ Rn, a kernel-based
function approximation can be formed as s(x) =

∑m
i=1 cik(x,ui) [1, 30], where k(·, ·) is a positive

definite kernel function, and the centers of the kernel basis functions U = {ui}mi=1 is a smaller set of
points than the training data X [1, 30], same as inducing points. For a given set of inducing points U,
the coefficients c are solved from a least squares problem:

minimize
c∈Rm

L(c) = minimize
c∈Rm

{∥KXUc− y∥2 + σ2∥c∥2KUU
}, (5)
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where σ is the regularization parameter, and ∥c∥2KUU
= c′KUUc. The resulting coefficients cLS

from solving Eq. 5 match with SVGP in Eq. 4:

cLS = (σ2KUU +KUXKXU)−1KUXy = cGP .

Furthermore the prediction of kernel-based approximation at a new point x∗ also matches with the
optimal mean predictor of variational GPs in Eq. 4: s(x∗) = Kx∗UcLS = Kx∗UcGP = µGP . The
key observation of the shared mean predictor motivates the proposed initialization method. If U and
kernel hyperparameters θ can be estimated from the least squares approximation, coefficients cLS

can be solved, and then the optimal variational mean m̃ can be computed:

m̃ = σ−2KUUΣKUXy = KUU(σ2KUU +KUXKXU)−1KUXy = KUUcGP = KUUcLS .

If the inducing points U and kernel hyperparameters θ are good enough to obtain a good mean
predictor m̃, we expect to improve training of variational GPs using these parameters (U, θ and m̃)
as an initialization. See Appendix A for more details of the proposed initialization method.

3.1 Solving for inducing points U and kernel hyperparameters θ

If we incorporate inducing points U and kernel hyperparameters θ as unknown variables, Eq. 5 can
be equivalently reformulated as

minimize
c,U,θ

L(c,U, θ) = minimize
c,U,θ

∥∥∥∥[KXU

σLT
UU

]
c−

[
y
0

]∥∥∥∥2 ,
where LUU is the Cholesky factor of KUU. To solve for U and θ first, we use the idea of variable
projection [7, 21], which was introduced to solve such nonlinear least squares problems where part of
the parameters are linear and can be separated from other nonlinear ones [7, 21]. Let ȳ = [y;0] and
A = [KXU;σLT

UU], then the solution is cLS = A†ȳ by fixing U and θ, where A† = (ATA)−1AT .
Putting the solution cLS back gives the projected problem

minimize
U,θ

Lp(U, θ) = minimize
U,θ

∥(I −AA†)ȳ∥2 := ∥r(U, θ)∥2, (6)

which minimizes the residual r(U, θ) = (I −AA†)ȳ as a function of U and θ and can be solved as
a nonlinear least squares problem. Any standard numerical methods apply and we use the Levenberg-
Marquardt (LM) algorithm [15, 19]. Specifically, let p = (U, θ) be the variables, and Jr(p) be the
Jacobian of r(p). The LM algorithm solves a regularized least squares problem at the k-th iteration:

pk+1 = pk − (JT
r (pk)Jr(p

k) + λ2Dk)
−1Jr(p

k)r(pk),

where Dk is a scaling matrix, which may be an identity [15] or a diagonal one with column norms of
Jr(p

k) at diagonal [19]. For analytical derivation of Jr(p), see Appendix B. After solving for U
and θ, we then compute for m̃ as aforementioned, and we use U, θ and m̃ during the initialization of
an SVGP model. Other (hyper)parameters will be initialized by the default way.

4 Experiments

In this section we empirically evaluate the performance of our initialization on both SVGP and
PPGPR, denoted as SVGP-lm and PPGPR-lm respectively. We compare to three baseline methods of
inducing points initialization: random subsampling from training data, K-means clustering [16, 18]
and pivoted Cholesky [4, 3]. For our LM implementation, we use centers from K-means clustering as
initialization. We use SVGP and PPGPR models implemented in GPyTorch [6] and use a prior zero
mean and a Squared Exponential (SE) kernel. Our experiments were accelerated on a single GPU
and code is available upon request.

We consider eight univariate regression UCI datasets [5], with the number of training data ranging
from 11250 to 47706 and input dimensions ranging from 8 to 20. We use 500 or 800 inducing points
based on training data size. We use an Adam optimizer [13] and separately tune the learning rate for
each method on each dataset.

Results were averaged over 10 random train/test/validation splits. As shown in Table 1, SVGP-lm
yields significantly lower RMSE than all baselines on all datasets, and so does PPGPR-lm. As
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Table 1: Testing RMSE on eight univariate regression datasets (lower is better). Results are averaged
over 10 random train/validation/test splits.

Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir

SVGP-random 0.3009 0.3806 0.4421 0.1853 0.5168 0.08832 0.1412 0.1218
SVGP-kmeans 0.2995 0.3823 0.4403 0.1836 0.514 0.0886 0.1405 0.1217
SVGP-pivchol 0.3012 0.3808 0.4393 0.1802 0.5177 0.08872 0.1412 0.1217
SVGP-lm 0.2187 0.3703 0.3336 0.1526 0.486 0.08909 0.1239 0.12

PPGPR-random 0.3201 0.3931 0.6243 0.2886 0.5102 0.09304 0.229 0.1249
PPGPR-kmeans 0.3229 0.3925 0.6246 0.286 0.5108 0.08997 0.2287 0.1245
PPGPR-pivchol 0.3323 0.393 0.6286 0.2892 0.5208 0.09009 0.234 0.1248
PPGPR-lm 0.2947 0.3747 0.4499 0.2441 0.4907 0.09014 0.2123 0.124

Table 2: Testing NLL on eight univariate regression datasets (lower is better). Results are averaged
over 10 random train/validation/test splits.

Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir

SVGP-random 0.2971 0.4538 0.6112 -0.1945 0.7652 -1.028 -0.4666 -0.6884
SVGP-kmeans 0.2869 0.4577 0.607 -0.197 0.7584 -1.026 -0.4743 -0.6869
SVGP-pivchol 0.2875 0.4538 0.6039 -0.229 0.7639 -1.025 -0.4692 -0.6894
SVGP-lm 0.1211 0.4289 0.358 -0.3675 0.7959 -1.031 -0.4843 -0.6986

PPGPR-random -0.1474 0.3785 -0.5554 -0.8402 0.5654 -1.628 -1.126 -1.899
PPGPR-kmeans -0.1596 0.3778 -0.5517 -0.8395 0.5578 -1.642 -1.132 -1.908
PPGPR-pivchol -0.1629 0.3745 -0.5194 -0.8515 0.5777 -1.633 -1.113 -1.897
PPGPR-lm -0.1384 0.3572 -0.6666 -0.8178 0.5784 -1.617 -1.111 -1.902

shown in Table 2, SVGP-lm consistently shows the best NLL on seven out of eight datasets; while
PPGPR-lm only shows comparable results compared to baselines. This shows that our initialization
helps finding a better local minimum for the multimodal optimization problem during training. The
total time cost of SVGP-lm (including LM and training) is comparable to the standard SVGP training
with other baseline initialization methods. See Appendix C for more details such as error bars on
regression results, time cost comparison and ablation study.

5 Related Work

The selection and optimization of inducing points is one of the most crucial and hardest parts in
variational GP training. The original work of Titsias [28] treated the inducing points as variational
parameters to avoid overfitting. Many works have explored better ways of optimizing inducing points
during the training. Rossi et al. [25] treated inducing points as model parameters with priors and
posteriors and proposed a fully Bayesian treatment of both inducing points and GP hyperparameters.
Similarly, Uhrenholt et al. [29] placed a point process prior on the inducing points to select a good
number of inducing points in a probabilistic way. Burt et al. [2] provided an asymptotic bound on
the KL divergence, which helps with selecting number of inducing points. Our work, combining the
ideas of kernel-based least squares fitting and variational GP inference, however, is orthogonal to
those works and can be applied to any training methods as an initialization.

6 Conclusion

SVGP enables GP inference on large datasets by combining inducing points methods and stochastic
training. However, the stochastic ELBO loss function is highly multimodal with many local minima
and training often suffers from slow and suboptimal convergence. Our initialization through kernel-
based least squares fitting solves for a good set of inducing points, and yields good initial values
for the variational parameters as well as kernel hyperparameters as a by-product. Empirically,
our initialization helps SVGP and PPGPR find better local minima and obtain better prediction
performance under a comparable total time cost. Our initialization approach can be combined with
any other training improvement of SVGP.
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A Details of the Initialization Method

In this section, we discuss other details of our initialization method, including the initialization of the
variational covariance matrix as a by-product and treatment of the noise variance parameter.

A.1 Uncertainty estimation

One of the strengths of GPs is the uncertainty estimation, which the kernel-based function approxi-
mation is not capable of. However, a given set of inducing points U and kernel hyperparameters θ
are sufficient to compute the optimal variational covariance S̃ in Eq.3 as a by-product:

S̃ = KUUΣKUU,

where Σ = (KUU + σ−2KUXKXU)−1. Unlike the variational mean, which could then guarantee
an equally good mean prediction of variational GP, there is no guarantee of how the S̃ would perform
in uncertainty estimation using a good set of U and θ from kernel-base approximation. However, in
our empirical study, initializing the variational covariance by the computed optimal convariance S̃
helps reduce both the training and testing NLL a lot. So we also incorporate the computed S̃ in our
initialization scheme.

A.2 The σ parameter

The σ parameter plays an important role in matching the mean predictor. In the kernel-based least
squares function approximation setting, the σ is a regularization parameter in the least squares
problem in Eq. 5. While in the variational GP setting, the σ parameter stands for the standard
deviation of the observation noise ϵ, where the noise ϵ ∼ N (0, σ2I) is assumed to be Gaussian.
Though mathematically equivalent in the two mean predictor formulations, the treatment of the
σ parameter is usally different in these two settings. In a least squares setting, the regularization
parameter σ is not solved within the minimization problem in Eq. 5, but there are various standard
ways of selecting a good value for regularization parameter σ. While in a GP setting, the noise variance
σ2 is usually optimized together with all model hyperparameters such as kernel hyperparameters θ
via Maximum Likelihood [23]. In our initialization, we use fixed σ in the kernel-based least squares
fitting setting, and then use the same σ as an initialization of the variational GP.

B Jacobian of the projected problem

In this section we derive the Jacobian Jr(p) of the residual r(p) in the projected problem

minimize
p

Lp(p) = minimize
p

∥(I −AA†)ȳ∥2 := ∥r(p)∥2.

Note that r(p) = (I −AA†)ȳ, where only the matrix A contains p, so it boils down to finding the
Jacobian of the residual projector P = I −AA† with respect to p.
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Figure 1: A performance comparison of using different number of LM iterations on the Elevators
dataset. LM-X indicates that the initialization uses X LM iteration.

Table 3: Standard error of testing RMSE, averaged over 10 random train/validation/test splits.

Pol
(1e-3)

Elevators
(1e-3)

Bike
(1e-3)

Kin40k
(1e-3)

Protein
(1e-3)

Keggdir
(1e-3)

Slice
(1e-3)

Keggundir
(1e-3)

SVGP-random 1.39 1.59 3.47 1.63 1.27 1.01 1.42 0.87
SVGP-kmeans 1.30 1.74 3.42 1.93 1.49 0.97 1.25 0.90
SVGP-pivchol 1.62 1.68 3.13 1.67 1.40 0.98 1.40 0.89
SVGP-lm 1.56 1.89 2.90 0.91 1.15 1.06 1.00 0.96

PPGPR-random 2.13 2.13 4.37 4.90 1.20 1.32 1.81 0.89
PPGPR-kmeans 2.22 2.17 4.59 4.71 1.35 0.96 3.10 0.91
PPGPR-pivchol 2.44 2.20 4.36 5.02 1.39 0.90 1.94 0.95
PPGPR-lm 4.17 2.23 12.0 0.61 1.29 8.85 2.05 0.88

Here we use the variational notation to denate derivatives of matrices. For example, δS represent
infinitesimal changes to a vector (or matrix) S, and the Jacobian of S can be readily obtained from
δS by applying δS to each single dimension of the variables that we differentiate with respect to.

Using the definition of pseudoinverse, we can derive

δP = −(δA)A† − (A†)T (δA)T + (A†)T (AT δA+ (δA)TA)A†

= −P (δA)A† − (A†)T (δA)TP,

Therefore, for the residual we have

δr = (δA)ȳ = −P (δA)c− (A†)T (δA)T r0,

where c = A†ȳ and r0 = y −Ac. Given the economy QR decomposition of A = QR and observe
that (A†)T = QR−T we have

δr = (I −QQT )(δA)c−QR−T (δA)T r0

= −(δA)c+QQT (δA)c−QR−T (δA)T r0.

C Experiment Details

Regression Details In this section, we provide more detailed results of our empirical evaluation.
Table 3 includes standard errors of RMSE results, and Table 4 includes standard errors of NLL
results. Table 5 presents the total time cost comparison on SVGP. The time cost of SVGP-lm includes
both LM initialization and the subsequent SVGP training. As shown in Table 5, the total time cost
of SVGP-lm is comparable to, and sometimes less than, the standard SVGP-random training. We
only compare SVGP-lm with SVGP-random because: a) Other baselines share similar time cost as
SVGP-random and b) PPGPR shares simliar time cost as the SVGP counterparts.
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Table 4: Standard error of testing NLL, averaged over 10 random train/validation/test splits.

Pol
(1e-3)

Elevators
(1e-3)

Bike
(1e-3)

Kin40k
(1e-3)

Protein
(1e-3)

Keggdir
(1e-3)

Slice
(1e-3)

Keggundir
(1e-3)

SVGP-random 3.11 3.90 6.59 0.39 2.27 8.09 7.14 6.29
SVGP-kmeans 2.89 4.43 6.50 3.89 2.57 9.35 6.22 6.60
SVGP-pivchol 3.61 4.30 6.08 3.82 2.48 9.24 7.02 6.62
SVGP-lm 7.21 4.68 18.5 3.57 4.13 9.21 4.67 6.18

PPGPR-random 4.49 5.83 12.8 11.8 7.26 29.4 2.89 19.9
PPGPR-kmeans 4.65 6.22 10.4 14.1 6.55 21.5 2.71 16.2
PPGPR-pivchol 5.74 5.64 12.0 5.78 6.56 16.1 3.20 22.1
PPGPR-lm 9.88 5.05 23.2 2.92 3.00 21.7 3.14 27.9

Table 5: Total time cost (min) comparison on SVGP. PPGPR has similar time cost results.

Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir

SVGP-random 3.5 2.5 2.5 15.4 18.2 19.0 21.2 25.1
SVGP-lm 3.5 1.3 5.1 11.2 8.00 10.9 19.6 26.4

Ablation Study on LM Iterations We perform ablation study on different number of LM iterations,
and compare how it affects the performance of SVGP-lm and PPGPR-lm. Figure 1 shows the training
on the Elevators dataset using results from different LM iterations. On this dataset, we see that using
10 LM iterations is sufficient and increasing the number of LM iterations to 50 or 150 does not
significantly increase the training performance.
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