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Abstract

Investigating relationships between response variables and covariates in environ-
mental science, geoscience, and public health is an important endeavor. Based on a
Bayesian mixture of finite mixtures model, we present a novel spatially clustered
coefficients regression model for count value data. The proposed method detects
the spatial homogeneity of the Poisson regression coefficients. A Markov random
field constrained mixture of finite mixtures prior provides a regularized estimator of
the number of clusters of regression coefficients with geographical neighborhood
information. An efficient Markov chain Monte Carlo algorithm is developed using
multivariate log gamma distribution as a base distribution. Simulation studies are
carried out to examine the empirical performance of the proposed method. Finally,
we analyze Georgia’s premature death data as an illustration of the effectiveness of
our approach.

1 Introduction

Spatial regression models have been universally used in many different fields such as environmental
science (Hu & Bradley, 2018; Yang et al., 2019; Yang & Bradley, 2021), biological science (Zhang &
Lawson, 2011), and econometrics (Brunsdon et al., 1996; Yang et al., 2022) to explore the relationship
between a response variable and a set of predictors over a region. One of the most important tasks for
a spatial regression model is to capture the spatial dependence structure for the response variable.
Spatial random effects are accounted for by the intercepts, and the regression coefficients are assumed
to be constant over space under both linear models (Cressie, 1992) and generalized linear models
(Diggle et al., 1998). Brunsdon et al. (1996) proposed a geographically weighted regression (GWR) to
capture spatially varying patterns in regression coefficients. The idea of GWR has been subsequently
extended to various works by Hu & Huffer (2019); Ma et al. (2020a); Xue et al. (2019). Furthermore,
Gelfand et al. (2003) incorporated spatial Gaussian process to linear regressions to build a spatially
varying coefficients regression model. The aforementioned works all assume that each location
has its own set of regression parameters, which sometimes leads to overfitting. The detection of
clustered covariate effects has significant benefits in various fields, including environmental science,
spatial econometrics, and disease mapping. For instance, different parts of a country may have
different economic conditions and development patterns. From a modeling perspective, grouping
more advanced and less developed regions into separate clusters produces a more parsimonious
model.

2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems.



Spatial cluster detection methods, such as the scan statistic-based method (Kulldorff & Nagarwalla,
1995; Jung et al., 2007), provide a remedy for spatial heterogeneity detection. Another important
approach for spatial heterogeneity detection is to use the Bayesian framework to pursue spatial
clusters (Carlin et al., 2014; Li et al., 2010). These two important approaches mainly focus on
estimating cluster configurations of spatial responses. Recently, methods for cluster detection of
spatial regression coefficients have been proposed to detect the homogeneity of the covariate effects
among sub-areas (Lee et al., 2017, 2019) under spatial scan statistics. From a graph theory perspective,
Li & Sang (2019) incorporated spatial neighborhood information based on minimum spanning trees
in a penalized approach to detect spatially clustered coefficients. The existing literature focuses on
Gaussian data under the linear model framework. For many social and environmental applications,
Poisson regression for count response plays an important role (Bradley et al., 2018).

Several major challenges exist in developing clustering algorithms for regression coefficients under
the Poisson model. First, specific spatial contiguity constraints must be imposed on the clustering
configuration to facilitate interpretations in the spatially clustered coefficients regression. Furthermore,
spatially contiguous constraints in many regional science applications should not dominate the global
clustering configuration. In other words, the clustering results should contain the spatially contiguous
and spatially disconnected patterns. The aforementioned methods (Lee et al., 2017, 2019; Li & Sang,
2019) guarantee spatial contiguity, but fail to obtain globally discontiguous clusters that allow two
clusters with long geographical distances to belong to the same cluster. In addition, Anderson et al.
(2017) discusses Poisson regression with a spatially clustered intercept and a spatially clustered slope
but does not impose a spatial contiguity constraint.

Second, an important consideration in the clustering algorithm is to estimate the number of clusters.
Bayesian inference provides a probabilistic framework for simultaneous inference of the number of
clusters and the clustering configurations. Nonparametric Bayesian approaches, such as the Dirichlet
process mixture (DPM) model (Ferguson, 1973), offer choices to estimate the number of clusters
and the clustering configurations simultaneously. Ma et al. (2020b) proposed a Bayesian clustered
regression for spatially dependent data based on Dirichlet process mixture model. However, their
methods do not contain a consistent estimator of the number of the clusters due to inconsistency of
the Dirichlet process mixture model (Miller & Harrison, 2013). In order to solve this over clustering
problem of DPM, rich literature Miller & Harrison (2018); Xie & Xu (2019); Lu et al. (2018) propose
several different ideas to obtain consistent estimators of the number of clusters. While existing
works try to mitigate the over-clustering problem, no spatial information, such as neighborhood
relationships, is utilized, while these have great potential for improving the clustering performance.

To address these challenges, in this paper, we develop a Markov random field (MRF) constrained
MFM (MRF-MFM) model to capture the spatial homogeneity in regression coefficients for the Poisson
model. Specifically, we develop a new Bayesian method for spatially clustered coefficients Poisson
regression which leverages geographical information based on Markov random field constrained
MFM model. The proposed methods leverage geographical information in Bayesian model-based
clustering algorithm for Poisson regression. MRF-MFM can capture both locally spatially contiguous
clusters and globally discontiguous clusters simultaneously. We develop a Gibbs sampler that enables
efficient full Bayesian inference on the number of clusters, mixture probabilities, and other modeling
parameters for Poisson regression with the help of multivariate log gamma (MLG) process (Bradley
et al., 2018). We demonstrate the excellent numerical performance of proposed mixture models
through simulations and an analysis of the premature death data in the state of Georgia.

2 Methodology

Consider a Poisson regression model with spatially varying coefficients as follows

y(si) ∼ Poisson(exp(X(si)βzi)), i = 1, · · · , n, (1)

where zi ∈ {1, · · · , k} are labels of clusters, βzi = β(si) is a p dimensional regression coefficients
at location si. From Gelfand et al. (2003), a Gaussian process prior can be assigned on regression
coefficients to obtain spatially varying pattern. Compared with spatially varying pattern, heterogeneity
pattern of covariate effects over subareas is also universally discussed in many different fields, such
as real estate applications, spatial econometrics, and environmental science.

2



We consider the following Bayesian hierarchical model

K ∼ pK , where pK is a p.m.f. on{1, 2, . . .}

(π1, . . . , πk) ∼ Dirichletk(γ, . . . , γ), given K = k; z1, . . . , zn
iid∼ π, given π

(β1, . . . ,βk) ∼ H, given K = k

yj ∼ fβzj
independently for j = 1, . . . , n, given β1:K , z1:n,

(2)

where H is the joint distribution for β1, . . . ,βk. The main differences between our approach and the
mixture of finite mixtures (MFM) is that MFM assumes β1, . . . ,βk are i.i.d sampled from a based
distribution, which fails to incorporate any dependency structure. Inspired by Orbanz & Buhmann
(2008), we apply the pairwise MRF in the level of coefficients to bring in interactions. With the
assistance of Markov random field modeling, our MRF-MFM can incorporate more broad types of
base measures with introducing dependence. Consider an undirected random graph G = (V,E,W ),
where V = {v1, . . . , vn} is the vertex set while E is the set of graph edges, with weights W on the
corresponding edges. Each vertex vi is associated with a random variable βi for i = 1, 2, . . . , k. The
pairwise MRF model is defined as

Π (β1, . . . ,βk) = exp

∑
i∈E

Hi (βi) +
∑

(i,j)∈E,j 6=i

Hij(βiβj)−A (W )


=

1

ZH
exp (H (β1, . . . ,βk)) ,

where ZH is the normalizing constant. The Theorem A.1 in the supplement provides the generalized
urn-model induced by MRF-MFM, thus a collapsed Gibbs sampler can be applied. Consider the
pairwise interactions, we model the conditional cost functions as

Hi|−i(βi | β−i) = λ
∑

{j∈∂(i)}

I(βi = βj), (3)

where λ is the smoothness parameter, ∂(i) denotes the set of the neighbors of observation i. The
spatial smoothness can be controlled by the magnitude of λ. When λ = 0, the MRF-MFM reduces to
MFM (Miller & Harrison, 2018). The conditional cost function in (3) is used in the data analysis of
the paper.

In the MRF-MFM, a natural choice for the base distribution of β1, · · · ,βk is the multivariate
normal distribution. However, since the multivariate normal distribution is not a conjugate prior for
Poisson regression, if it is to be used as the base distribution, it must be updated with Metropolis-
Hastings or auxiliary parameters such as (Neal, 2000) in Gibbs sampling algorithms. Bradley et al.
(2018) constructed a multivariate log-gamma distribution (MLG) which is conjugate with a Poisson
distribution. We propose an MRF-MFM for spatial clustered coefficients in Poisson regression based
on the MLG prior. The multivariate log-gamma random variable with four parameters µ,V ,α,κ
has the following probability density function:

f(q | µ,V ,α,κ) =
1

det(V )

(
n∏
i=1

καi
i

Γ(αi)

)
exp[α′V −1(q − µ)− κ′ exp{V −1(q − µ)}],

where “det” represents the determinant function. As a shorthand, we use the notation,
MLG (µ,V ,α,κ) for a MLG random variable. We adapt the MRF-MFM in conjunction with
MLG to a spatial Poisson regression setting, focusing on the clustering of spatially-varying coeffi-
cients β(s1), · · · ,β(sn), where β(si) is the p-dimensional coefficient vector for location si.

3 Illustration: Premature Deaths in Georgia

In this study, the proposed methods are used to analyze the factors that influence the number of
premature deaths in Georgia. The objective of this study is to investigate the relationship between
premature deaths and environmental factors such as PM 2.5 and food environment index. The dataset
is available at www.countyhealthrankings.org with 159 observations corresponding to the 159
counties in state of Georgia in 2015. For each county, the dependent variable is the number of the
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(b) Visualizations of PM 2.5 and Food Environment
Index

premature death in each county. The premature death is the death that occurs before the average age
of death in a certain population. In the United States, the average age of death is about 75 years. The
dependent variable is the number of lives lost per 100,000 population before age 75 in each county.
The two covariates we consider in this paper are PM 2.5 (X1) and food environment index (X2). PM
2.5 is the average daily density of fine particulate matter in micrograms per cubic meter. The food
environment index is the index of factors that contribute to a healthy food environment, 0 (worst) to
10 (best). Figures 1a and 1b present a visualization of the response and two covariates on the Georgia
map.

We apply the proposed methodology to present a detailed analysis of premature death data in the state
of Georgia. First, we rescale the data to a decent range as the variance in the Poisson distribution is
equal to the mean. The count of the premature death is scaled to hundreds. We run 25,000 MCMC
iterations and burn-in the first 15,000 iterations. The smoothing parameter is tuned over the grid
{0.1, 0.2, . . . , 1}. All other parameters are set to be consistent with the simulation study. The final
clustering result corresponds to the largest Logarithm of the Pseudo-Marginal Likelihood (LPML)
(Ibrahim et al., 2013), hence we choose the smoothing parameter equal 0.3. The 159 counties turned
out to be put into four clusters as illustrated in Figure 2. The number of the counties in each cluster are
150, 3, 5 and 1, respectively. We also compare our model with the best LPML to vanilla MFM, Latent
Gaussian Process (LGP) (Hadfield et al., 2010), conditional autoregressive (CAR) (Lee, 2013) models
and Bayesian spatially varying coefficient models (SVC) (Gelfand et al., 2003; Wheeler & Calder,
2007; Finley et al., 2013). The LPML values for candidate models are: -2221.45 (MRF-MFM),
-3614.38 (MFM), -2461.31 (LGP), -5015.93 (CAR), -3123.47 (SVC). Based on the LPML results,
our proposed model outperforms other models. In contrast, there are 15 different clusters identified
by vanilla MFM. From the estimation results shown in Table 1, we see that all the counties with
higher PM 2.5 will have higher premature deaths. For Cobb County, PM 2.5 has the largest effect on
premature death.
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Figure 2: Left: Illustration of 4 clusters identified by the proposed method for counties. Right:
Illustration of 15 clusters identified by vanilla MFM for counties.
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Table 1: Dahl’s method estimates for the four clusters of Georgia Data

Cluster β̂0 β̂1 β̂2

1 -1.134 0.077 0.209
2 -3.644 0.060 1.222
3 -1.325 0.476 -0.249
4 -0.188 1.446 -2.093

4 Supplementary Material

The supplementary material contains a detailed derivation of the proposed sampling algorithm, a
theoretical analysis of the proposed model under a specific Markov random field structure, and
additional simulations and real data analyses.
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A Methodology

A.1 Clustered Poisson Regression and Mixture of Finite Mixtures

In the popular Chinese restaurant process, zi, i = 2, . . . , n are defined through the following
conditional distribution Ferguson (1973):

P (zi = c | z1, . . . , zi−1) ∝
{
|c| , at an existing table labeled c
α, if c is a new table

, (4)

where |c| is the size of cluster c.

While CRP has a very attractive feature of simultaneous estimation on the number of clusters and the
cluster configuration, a striking consequence of this has been recently discovered Miller & Harrison
(2013) where it is shown that the CRP produces extraneous clusters in the posterior, leading to
inconsistent estimation of the number of clusters even when the sample size grows to infinity. A
modification of the CRP called Mixture of finite mixtures (MFM) model is proposed to circumvent
this issue Miller & Harrison (2018):

k ∼ p(·), (π1, . . . , πk) | k ∼ Dir(γ, . . . , γ), zi | k, π ∼
k∑
h=1

πhδh, i = 1, . . . , n, (5)

where p(·) is a proper probability mass function on {1, 2, . . . , } and δh is a point-mass at h. Compared
to the CRP, the introduction of new tables is slowed down by the factor Vn(t + 1)/Vn(t), which
allows a model-based pruning of the tiny extraneous clusters.

The coefficient Vn(t) is precomputed as:

Vn(t) =

+∞∑
k=1

k(t)

(γk)(n)
p(k), (6)

where k(t) = k(k− 1) . . . (k− t+ 1), and (γk)(n) = γk(γk+ 1) . . . (γk+ n− 1). zi, i = 2, . . . , n
under (5) can be defined in a Pólya urn scheme similar to CRP:

P (zi = c | z1, . . . , zi−1) ∝
{
|c|+ γ, at an existing table labeled c.
γVn(t+ 1)/Vn(t), if c is a new table.

, (7)

where t is the number of existing clusters.

A.2 Introducing Dependency on the Base Measure

Recall that the full model for MFM is
K ∼ pK , where pK is a p.m.f. on{1, 2, . . .}

(π1, . . . , πk) ∼ Dirichletk(γ, . . . , γ), given K = k; z1, . . . , zn
iid∼ π, given π

β1, . . . ,βk
iid∼ H, given K = k

yj ∼ fβzj
independently for j = 1, . . . , n, given β1:K , z1:n,

(8)

where H is the base distribution for β. The main insight of MFM is introducing a prior on the length
of the Dirichlet distribution, and thus renders some regularization on the number of clusters created.
However, the fourth step in the model, where i.i.d. samples are obtained from a base measure, fails to
incorporate any dependency structure.

Inspired by Orbanz & Buhmann (2008), we apply the pairwise MRF in the level of coefficients to bring
in interactions. With the assistance of Markov random field modeling, our MRF-MFM can incorporate
more broad types of base measures. Consider an undirected random graph G = (V,E,W ), where
V = {v1, . . . , vn} is the vertex set while E is the set of graph edges, with weights W on the
corresponding edges. Each vertex vi is associated with a random variable βi for i = 1, 2, . . . , k. The
pairwise MRF model is defined as

Π (β1, . . . ,βk) = exp

∑
i∈E

Hi (βi) +
∑

(i,j)∈E,j 6=i

Hij(βiβj)−A (W )


=

1

ZH
exp (H (β1, . . . ,βk)) ,

(9)
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where ZH is the normalizing constant. For example, for a Gaussian MRF, Hi(βi) = −Wiiβ
2
i /2

and Hij(βiβj) = −Wijβiβj/2; while for a binary MRF, i.e., the celebrated Ising model, Hi(βi) =
Wiiβi and Hij(βiβj) = Wijβiβj . We can then decompose the pairwise MRF into a vertex-wise
term P and an interaction term M , then

Π (β1, . . . ,βk) ∝ P (β1, . . . ,βk)M (β1, . . . ,βk) , with

P (β1, . . . ,βk) :=
1

ZP
exp

{∑
i

Hi (βi)

}
; M (β1, . . . ,βk) :=

1

ZM
exp

{∑
C∈C2

HC (βC)

}
,

(10)
where C2 := {C ∈ C | s.t. : |C| = 2} and C is the set of all cliques for the random graph (V,E,W ).
For the spatial clustered coefficient regression, we study the component P defined in equation (10)
with a MFM prior. Our next theorem provides the generalized urn-model induced by MRF-MFM,
thus a collapsed Gibbs sampler can be applied.
Theorem A.1. Suppose the data generating process follows equation (8) with H replaced by the
Markov random field Π(β1, ...,βk) in equation (10). If P is a continuous distribution and n0 > 1,
the distributions of βn0

given β1, . . . ,βn0−1 is proportional to

Vn0
(t+ 1)γ

Vn0(t)
P (β) +

t∑
i=1

exp
(
Hi|−i (βi | β−i)

)
(ni + γ) δβ∗i ,

with

Vn0(t) =

∞∑
k=1

k(t)

(γk)(n0)
pK(k); Hi|−i (βi | β−i) =

∑
{j:(i,j)∈E,j 6=i}

Hij(βiβj), (11)

where β∗1 , . . . ,β
∗
t , t ≤ n0 − 1 are the distinct values taken by β1, . . . ,βn0−1 and ni = #{j ∈

{1, 2, . . . , n0−1} : βj = β∗i }, x(m) = x(x+1) · · · (x+m−1) and x(m) = x(x−1) · · · (x−m+1)
.

This theorem shows how the MRF constraints directly affect the urn sampling scheme compared with
MFM.

A.3 Theoretical Properties under the exchangeable structure

In this section, we assume the covariatesX(si) are generated from random homogenous distribution
so it is marginalized. The incorporation of proper dependency structures into the estimation process
and assessing uncertainty is always an interesting subject. However, complex dependency structures
may destroy the consistency of MFM. Therefore, to maintain theoretical consistency, this paper
considers the case in which samples from the base measure are a subset of an infinite sequence of
exchangeable variables.

In Bayesian Statistics, the infinite sequence of exchangeable random variables is an important concept.
When β1, . . . are infinite exchangeable, for any finite k,

β1, . . . ,βk
D
= βπ(1), . . . ,βπ(k) for all π ∈ S(k), (12)

where S(k) is the set of all permutations for the index set {1, . . . , k}. If β1, . . . are i.i.d. sampled
from a distribution P (β), then they are exchangeable, but the reverse is not always true. Some widely
used models are based on exchangeable random variables that are not independent, like the Pólya’s
Urn (Blackwell et al., 1973) and Gaussian random variables that have the same marginal distribution
and the same correlation between any two of them.

The famous de Finetti’s Theorem (De Finetti, 1929) reveals the intrinsic characterization of exchange-
able random variables: there is a latent random variable θ, such that β1, . . . ,βn are a subset of
a infinite sequence of exchangeable variables sampled from Π(β1, . . .). It is summarized into the
following sampling procedure:

θ ∼ Θ, β1, . . . ,βk
i.i.d.∼ Π(β|θ), (13)

where Θ only depends on Π(β1, . . .). In other words, a subset of an infinite sequence of exchangeable
variables are conditionally i.i.d. given their latent labels. We refer to Bernardo & Smith (2009) for
more details on exchangeable sequences.
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Theorem A.2. Suppose the data generating process follows equation (8) with H replaced by
the hierarchical distribution in equation (13), and the distribution is correctly specified. If
pK(1), . . . , pK(k) > 0, denote T as the random variable for the number of clusters. Then we
have

|p (T = t | y)− p (K = k | y)| −→ 0 (14)

as n→∞.

Theorem A.2 provide some insight into our proposed MRF-MFM, compared to Dirichlet process
mixture model with the above Markov random fields (DP-MRF; Orbanz & Buhmann, 2008). For
DP-MRF, there could be a lot of small spurious clusters due to inconsistency of the Dirichlet process
mixture even in the i.i.d. case (Miller & Harrison, 2013). Due to the fact that we specify a prior
distribution for the number of components, the number of components in the posterior is appropriately
regularized. Even though the consistency result only holds for the exchangeable structure, we believe
that the regularization effect holds for all types of structures. Theorem A.2 is an extension of Theorem
5.2 in Miller & Harrison (2018) to the case of an exchangeable base measure. The limitation of the
above theorem is that it does not explore the frequentist property of the posterior, where the number
of clusters is assumed to be a fixed truth.

B Simulation

B.1 Settings

Our goal is to sample from the posterior distribution of the unknown parameters k, z = (z1, ..., zn) ∈
{1, ..., k} and β = (β1, . . . ,βk). We choose k − 1 ∼ Poisson(1) and γ = 1 in (36), µ = 0n,
V = 100In and α = κ = 100001n for all the simulations and real data analysis, where 0n is
an n-dimensional vector with 0, 1n is an n-dimensional vector of 1’s, and In is an n-dimensional
identity matrix. The computing algorithm and full conditional distributions are presented in Appendix
G, which efficiently cycles through the full conditional distributions of zi|z−i for i = 1, 2, . . . , n and
β, where z−i = z \ zi. The marginalization over k can avoid complicated reversible jump MCMC
algorithms or even allocation samplers. The posterior sampling algorithm is given in Algorithm 1 in
Appendix G. The details of the deviations of full conditionals are also given in Appendix G.

It is not appropriate to use the posterior mean or median of clustering configurations [z]. Dahl’s
method Dahl (2006) provides a remedy for posterior inference of clustering configurations based
on the squared error loss. There are also alternative loss functions in Wade et al. (2018) that do
not involve squared errors such as those in Dahl (2006). The Rand Index (RI) Rand (1971) is used
to measure the accuracy of clustering. The tuning parameter in Markov random fields needs to be
selected in our proposed model. The Logarithm of the Pseudo-Marginal Likelihood (LPML) Ibrahim
et al. (2013) is applied for tuning parameter selection, where a model with a larger LPML value is
more preferred.

B.2 Simulation Setting and Evaluation Metrics

Our analysis is based on the spatial structure of the state of Georgia, which contains 159 counties.
Using the county-level data, we build the graph using an adjacency matrix among different counties.
159 counties represent 159 vertices in this graph, and if a county shares a boundary with another
county, then vi and vj are connected. This graph is used for both simulation studies and real data
analysis. We consider two different spatial cluster designs shown in Figure 3. The first design consists
of two disjoint parts located in the top and bottom parts of Georgia. A second cluster comprises the
counties in the middle. The second design comprises three major spatial clusters. It is designed to
mimic a common premature death pattern in which geographically distant areas can share a similar
distribution pattern, and geographical proximity is not considered the only factor responsible for
homogeneity in premature death rates.

Two different scenarios are considered for each design. The first scenario does not take into account
spatial random effects, while in the second scenario, spatial random effects are included for each
design. The spatial random effects are assumed to follow a multivariate normal distribution with a
mean zero and exponential covariogram. Our simulation study consists of four scenarios in total. The
details of the data generation process are given in Appendix H. The four scenarios are for two cluster
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Figure 3: Simulation design with two and three cluster assignments

design without spatial random effect, two cluster design with spatial random effect, three cluster
design without spatial random effect, and three cluster design with spatial random effect, respectively.
In the three clusters design, the original regression coefficients are set to be 0.5, 1 and 1.5 for each
cluster correspondingly. On the other hand, in two clusters design, the original regression coefficient
set to be 1 and 1.5 for each cluster, respectively. For each case, we add the spatial random effect with
the intensity. We use the centroid coordinate in each county to represent that county then construct
the spatial random effect. Also, the range parameter and spatial variance parameter are both fixed in
each simulation. In each case, we avoid the zero count value to prevent numerical instability. Based
on the estimated number of clusters and Rand Index (RI), the clustering performance is evaluated.
Each replicate is also used to calculate the final number of clusters estimated. A total of 100 sets of
data are generated under different scenarios. We run 5000 iterations of the MCMC chain and burn-in
the first 1000 for each replicate.

B.3 Simulation Results

For each replicated data set, we fit MFM and MRF-MFM with different values of the smoothness
parameter and select the best smoothness parameter for each replicate based on LPML. We see that
our model outperforms the MFM model in terms of LPML in all four different scenarios. We also
evaluate the performance in terms of estimation results of the number of clusters. We report the
proportion of times the true cluster recovered among the 100 replicates. For the two-cluster without
spatial random effect design, we find out our model can recover the true number of clusters 100%
of the replicates. And the MFM model can recover 85% of the replicates. In this case, both models
perform well in the number of clusters estimation. But our model outperforms the MFM model in
terms of LPML value. For the two-cluster design with spatial random effects, we see that our model
can recover the true number of clusters 97% of the replicates, but the MFM model did not recover the
true cluster for any replicates. For the three-cluster without spatial random effect design, we find out
our model can recover the true number of clusters 88% of the replicates. On the other hand, MFM
recovers 62% of the replicates. Finally, for the three-cluster design with spatial random effects, we
find out our model can recover the true number of clusters 73% of the replicates. However, MFM did
not recover the true cluster for all replicates.

The results of the comparison of LPML, Rand index, and estimation of the number of clusters for each
design can be found in Table 2. Our method can effectively estimate the true number of clusters based
on the results shown in Table 2. However, if spatial random effects exist, MFM will overestimate
the number of clusters. Our proposed method also outperforms vanilla MFM with respect to model
fitness and clustering, as demonstrated by the LPML values and Rand index.

Furthermore, we show the average mean square error (AMSE) of our proposed method and MFM
in Table 3. We see that in all four different scenarios, our proposed method outperforms MFM in
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Table 2: Simulation Results for Four Scenarios including LPML, Rand Index (RI), and number of
true cluster cover rate (CR) by MRF-MFM (optimal) model and MFM model. We provide mean and
standard deviation for both LPML and RI.

Method Scenario LPML RI CR Scenario LPML RI CR

Optimal 1 -544.29 0.9970 100% 3 -752.76 0.9470 88%
(12.06) (0.0062) (235.91) 0.0389

MFM -1146.32 0.9901 85% -2201.69 0.9570 62%
(593.33) (0.0233) (830.66) (0.0231)

Optimal 2 -690.91 0.9875 97% 4 -1297.58 0.8469 73%
(34.36) (0.0129) (278.33) 0.0434

MFM -7632.18 0.8348 0% -8890.92 0.8350 0%
(1947.31) (0.0597) (2028.92) (0.0431)

Table 3: AMSE for β Estimation under All Scenarios
Method No Spatial Random effect With Spatial Random effect

Two Clusters Three Clusters Two Clusters Three Clusters

MRF-MFM-MLG β̂1 0.0848 0.2508 0.0966 0.3918
β̂2 0.0839 0.2435 0.0967 0.3814

MFM-MLG β̂1 0.1170 0.2841 0.3675 0.6996
β̂2 0.1164 0.2781 0.3668 0.6898

terms of coefficients estimations. The improvement of our proposed methods is evident for the data
generated from the model with spatial random effect.

C Discussion

Some topics beyond the scope of this paper are worth further investigations. First, in our MCMC
algorithm, one numerical integration is required for Gibbs sampling. Proposing an efficient calculation
algorithm of the numerical integration will broaden the applications of our proposed methods.
Furthermore, the proposed algorithm is numerically unstable when zero counts are observed, which
should be addressed in the future. Furthermore, different clusters may have different sparsity patterns
of the covariates. Incorporating spatial clustered sparsity structure of regression coefficients into the
model will enable the selection and identification of the most important covariates. One parameter of
the Markov random field is required to be selected. Proposing a hierarchical model for the tuning
parameter is also an interesting future work. The frequentist property of the posterior distribution is
also expected to be explored in the future. The inconsistency issue for the number of components due
to model misspecification (Miller & Harrison, 2018; Cai et al., 2021) is also worth addressing.

D Proof of the Theorem A.1

By Bayes’ theorem, we have:

Π (βi|β−i) ∝ Π (β1, . . . ,βn0
) = P (β1, . . . ,βn0

)M (β1, . . . ,βn0
) ∝ P (βi|β−i)M (βi|β−i) .

(15)
As shown in Miller & Harrison (2018), by conditioning on the different possible situations of the
cluster for the new observations, we have

P (βi|β−i) ∝
Vn0

(t+ 1)γ

Vn0(t)
P (βi) +

t∑
i=1

(ni + γ) δβ∗i . (16)

Let ∂(i) := {j : (i, j) ∈ E}. When considering the full conditional distribution

M (βi|β−i) ∝ exp
(
Hi|−i(βi|β−i)

)
, (17)
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where Hi|−i(βi|β−i) only depends on Hij(βiβj) for (i, j) ∈ E. Note that

Hi|−i (βi|β−i) = 0 if Si /∈ S∂(i) , (18)

where si specifies the cluster that βi belongs to. With the property in equation (18) and the assump-
tion that P is continuous, exp

(
Hi|−i (βi|β−i)

)
= 1 almost surely for βi ∼ P . Then given any

measurable function f for P (β) and any subset A for the domain of βi,∫
A

f (βi)M (βi|β−i)P (βi) dβi=

∫
A

f (βi)
1

ZH′
exp

(
Hi|−i (βi|β−i)

)
P (βi) dβi

=

∫
A

f (βi)
1

ZH′
P (βi) dβi,

(19)

where the constant ZH′ only depends on the constant part of M (βi|β−i). Hence, the full conditional
of Π can be derived

Π (βi|β−i) ∝
Vn0(t+ 1)γ

Vn0
(t)

P (βi) +

t∑
i=1

exp
(
Hi|−i (βi|β−i)

)
(ni + γ) δβ∗i . (20)

E Proof of the Theorem A.2

Proposition E.1. If the data generating process follows equation (8) with H replaced by the hierar-
chical distribution in equation (13), then we have

p(C) = Vn(t)
∏
c∈C

γ(|c|), p(C | k) =
k(t)

(γk)(n)

∏
c∈C

γ(|c|),

p(K = t | T = t) =
t(t)

Vn(t)(rt)(n)
pK(t)→ 1, C ⊥ K | T, (21)

where t = |C| is the number of clusters while T is the corresponding random variable of t and Vn(t)
is defined in equation (6).

The proof of this proposition directly follows from Miller & Harrison (2018), since all conclusions
only involves on C,K and T , while the i.i.d assumption on β is not used.

Lemma E.2. Suppose the data generating process in Proposition E.1, such that the distribution is
correctly specified. Given the cluster configuration C, the data y and the number of components K
are independent.

Remark E.3. As with MFM, we generalize the same result to exchangeable cases. Since the
dependence between y is totally decided by β, when β are exchangeable, all the β play the same role
in generating y. When β are marginalized, the cluster configuration C covers the same information
with the number of components K and the latent labels z.

E.1 Proof of the Lemma E.2

Proof. We show that the conditional independence among data y and the number of components
K = k given the cluster configuration C still holds when all β are exchangeable.
Let Ei = {j : zj = i}, based on the definition of Ei and z, we have

p(y|β, z, k) =

k∏
i=1

∏
j∈Ei

p(yj |βi) =

t∏
i=1

∏
j∈Ei

p(yj |β∗i ), (22)

where β∗i , i = 1, 2, . . . , t are the distinct values ofβ1:k decided by z and y, andβ1:k = (β1, ...,βk)>.
Given z, the transformation from variable β1:k to β∗1:t, is totally decided, so when marginalizing the
unused β∗(t+1):k, given any function g(β∗1:t), we have the identity∫

Θk

g(β∗1:t)p(β|z, k) (dβ) =

∫
Θt

g(β∗1:t)p(β
∗
1:t)dβ

∗. (23)
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Note that β∗1:t are exchangeable based on assumption, then the density after marginalizing β can be
seen

p(y|z, k) =

∫
Θk

p(y|β, z, k)p(β|z, k)dβ =

∫
Θk

k∏
i=1

∏
j∈Ei

p(yj |βi)p(β|z, k) (dβ)

=

∫
Θt

t∏
i=1

∏
j∈Ei

p(yj |β∗i )p(β∗1:t)dβ
∗

(i)
=

∫
Θt

t∏
i=1

p(yEi
|β∗i )

∫ t∏
i=1

p(β∗i |θ)dF (θ)dβ∗

(ii)
=

∫ ∫
Θt

t∏
i=1

[p(yEi
|β∗i )p(β∗i |θ)] dβ∗dF (θ)

(iii)
=

∫ t∏
i=1

mi(yEi
,θ)dF (θ),

(24)

where mi(yEi ,θ) is a function only depends on yEi and θ. In addition, (i) directly follows from de
Finetti’s Theorem; for (ii), we apply the Fubini’s theorem; (iii) is because the expression depends
only on z, k through C = C(z) since there is no correspondence between Ei and β∗i after integrating
out β∗. From the last expression, we can see p(y|z, k) can be represented as a function of C,y,
which implies that y and K are conditional independent given the cluster configuration C.

Based on the fourth line in Proposition 1 and Lemma E.2, we have C ⊥ K |T and y ⊥ K | C. Then
we have

p(y|t, k) =
∑
C:|C|=t

p(y|C, t, k)p(C|t, k) =
∑
C:|C|=t

p(y|C, t)p(C|t) = p(y|t), (25)

which implies y ⊥ K |T . Then for any n ≥ k,

p (K = k |y) =

k∑
t=1

p (K = k |T = t,y) p (T = t |y) =

k∑
t=1

p (K = k |T = t) p (T = t |y) .

(26)
In addition, p(K = t|T = t) = 1/Vn(t) −→ 1 as n→∞ based on the third equation in Proposition
1. Thus

p (K = k |y)→
k∑
t=1

I(k = t)p(T = t |y) = p(T = t |y). (27)

F Review Multivariate Log-Gamma Distribution

F.1 Probability Density Function for Multivariate Log-Gamma Distribution

We first review the multivariate log-gamma distribution from Bradley et al. (2018). We define the
n-dimensional random vector φ = (φ1, ..., φn)′, which consists of n mutually independent log-
gamma random variables with shape and scale parameters organized into the n-dimensional vectors
α ≡ (α1, ..., αn)′, and κ ≡ (κ1, ..., κn)′, respectively. Then define the n-dimensional random vector
q as follows

q = µ+ V φ, (28)
where the matrix V ∈ Rn × Rn and µ ∈ Rn. Bradley et al. (2018) called q the multivariate
log-gamma random vector. The random vector q has the following probability density function:

f(q | c,V ,α,κ) =
1

det(V )

(
n∏
i=1

καi
i

Γ(αi)

)
exp[α′V −1(q−µ)−κ′ exp{V −1(q−µ)}]; q ∈ Rn,

(29)
where “det” represents the determinant function. As a shorthand we use the notation,
MLG (µ,V ,α,κ), for the probability density function in (29).
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F.2 Conditional Distributions for Multivariate Log-Gamma Random Vectors

Gibbs sampling from full-conditional distributions will require simulating from conditional distribu-
tions of multivariate log-gamma random vectors. Here, we provide a review for the technical results
needed to simulate from these conditional distributions.

We first look at the Proposition 1 from Bradley et al. (2018). Let q ∼ MLG (c,V ,α,κ), and let
q = (q′1, q

′
2)′, where q1 is g-dimensional and q2 is (n−g)-dimensional. In a similar manner, partition

V −1 = [H B] into an m× g matrix H and an m× (m− g) matrix B. Then, the conditional pdf of
is given by

f(q1 | q2 = d, c,α,κ) = M exp(α′Hq1 − κ′1.2 exp(Hq1)). (30)

where κ1.2 ≡ exp(Bd− V −1c− log(κ)) and the normalizeing constant M is

M =
1

det(V V ′)
1
2

(
n∏
i=1

καi
i

Γ(αi)

)
expα′Bd−α′V −1c[∫
f(q | c,V ,α,κ)dq1

]
q2=d

, (31)

so the cMLG(H,α,κ1.2) is equal to the pdf in equation (34), where “cMLG” stands for “conditional
multivariate log-gamma.” In Bradley et al. (2018), it indicates that cMLG does not fall within the
same class of pdfs given in (30). This is primarily due to the fact that the real-valued matrix H, within
the expression of cMLG, is not square. Thus, we require an additional result that allows us to simulate
from cMLG.

Next, we look at the Theorem 2 from Bradley et al. (2018). Let q ∼ MLG (0n,V ,α,κ), and
partition this n-dimensional random vector so that q = (q′1, q

′
2)′, where q1 is g-dimensional and

q2 is (n− g)-dimensional. Additionally, consider the class of MLG random vectors that satisfy the
following:

V −1 = [Q1 Q2]

[
R1 0g,n−g

0n−g,g
1
σ2
In−g

]
(32)

where in general 0r,t is a r × t matrix of zeros; In−g is an (n− g)× (n− g) identity matrix;

H = [Q1 Q2]

[
R1

0n−g,g

]
(33)

is the QR decomposition of the n × g matrix H; the n × g matrix Q1 satisfies Q′1Q1 = Ig, the
n× (n− g) matrix Q2 satisfies Q′2Q2 = In−g , and Q′2Q1 = 0n−g,g; R1 is a g × g upper triangular
matrix; and σ2 > 0. Hence, the marginal distribution of the g-dimensional random vector q1 is given
by

f(q1 |H,α,κ) = M1 exp(α′Hq1 − κ′ exp(Hq1)). (34)

where the normalizing constant M1 is

M1 = det([H Q2])

(
n∏
i=1

καi
i

Γ(αi)

)
1∫

f(q | 0n,V = [H Q2]
−1
,α,κ)dq1

. (35)

And, the g-dimensional random vector q1 is equal in distribution to (H ′H)−1H ′ω, where the
n-dimensional random vector ω ∼ MLG(0n, In,α,κ).

In Bradley et al. (2018), it is evident that this particular class of marginal distributions (defined
in Theorem 2 in Bradley et al. (2018)) falls into the same class of distributions as the conditional
distribution of q1 given q2. And Theorem 2 in Bradley et al. (2018) provides a way to simulate from
cMLG. Furthermore, it shows that it is (computationally) easy to simulate from cMLG provided
that g � n. Recall that H is n × g, which implies that computing the g × g matrix (H ′H)−1 is
computationally feasible when g is “small.” We refer the readers to see Bradley et al. (2018) for a
comprehensive discussion.
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Table 4: Parameters of the full conditional distribution
Parameter Form

Hβ

[
V −1

X(si)

]
αβ

[
α∑

zi=r
y(si)

]
κβ

[
κ∑

zi=r
I(zi=r)

]

G Full Conditional Distributions and Algorithm

In general, the hierarchical model can be expressed as follows

Data Model: y(si) | β(si) ∼ Poisson(exp (X(si)β(si)))

MRF: (β(s1), · · · ,β(sn)) ∼M(β(s1), · · · ,β(sn))

n∏
i=1

G(β(si))

MLG: β1, . . . ,βk ∼ MLG(µ,V ,α,κ)

MFM: G(β(si)) =

k∑
j=1

πjβj , π1, . . . , πk | k ∼ Dirichlet(γ, . . . , γ),

k ∼ p(·),where p(·) is a p.m.f on {1, 2, . . .}.

(36)

The full conditional distributions in Markov chain Monte Carlo (MCMC) sampling of MRF-MFM
are given as follow.

For each term βββr in βββ = (βββ1, . . . ,βββk), the full conditional distribution is:

f(βββr | −) ∝ MLG(0p,V ,α,κ)
∏
zi=r

Poisson(exp (X(si)β(szi))

∝ exp(α′V −1βr − κ′ exp(V −1βr))
∏
zi=r

exp (X(si)β(szi))
y(si) exp(− exp (X(si)β(szi)))

∝ exp

(
α′V −1βr +

∑
zi=r

y(si)X(si)β(szi)

)

exp

(
−κ′ exp(V −1βr)−

∑
zi=r

I(zi=r) exp(X(si)β(szi))

)

∝ exp

[
(α,

∑
zi=r

y(si))
′
[
V −1

X(si)

]
βr

]
exp

[
−(κ,

∑
zi=r

I(zi=r))
′ exp(

[
V −1

X(si)

]
βr)

]
(37)

This implies that f(βββr | −) ∼ cMLG(Hβ ,αβ ,κβ).

For each term zi in z = (zi, . . . , zn), the full conditional distribution is:

P (zi = c | z1, . . . , zi−1) ∝

{
P (zi = c | z−i)dPoisson(y(si), exp(X(si)βr)), at table labeled c
Vn(|C−i|+1)
Vn(|C−i|) γm(y(si)), if c is a new table

.
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where

m(y(si)) =

∫
MLG(0p,V ,α,κ)Poisson(y(si) | βr)dβr

∝
∫

1

det(V V ′)
1
2

(
p∏
i=1

καi
i

Γ(αi)

)
exp(α′V −1βr − +κ′ exp(V −1βr))

exp [X(si)βr]
y(si) exp [− exp(X(si)βr)]

=
1

det(V V ′)
1
2

(
p∏
i=1

καi
i

Γ(αi)

)
∫

exp

[
(α,

∑
zi=r

y(si))
′
[
V −1

X(si)

]
βr

]
exp

[
−(κ,

∑
zi=r

I(zi=r))
′ exp(

[
V −1

X(si)

]
βr)

]

=
1

det(V V ′)
1
2

(
p∏
i=1

καi
i

Γ(αi)

)
1

M1

and

M1 = det([Hβ Q2])

(
n+p∏
i=1

καi
i

Γ(αi)

)
1∫

f(y(si) | 0n+p,V = [Hβ Q2]
−1
,α,κ)

and “det” is a short hand as determinant of a matrix.

Algorithm 1 Collapsed sampler for MRF-MFM

Initialize: z = (z1, . . . , zn) and β = (β1, . . . ,βk)
for each iteration = 1 to B do

Update β = (β1, . . . ,βk) conditional on z in a closed form as

f(βββr | −) ∼ cMLG(Hβ ,αβ ,κβ)

where,

Hβ =

[
V −1

X(si)

]
αβ =

[
α∑

zi=r
y(si)

]
κβ =

[
κ∑

zi=r
I(zi=r)

]
Update z = (z1, . . . , zn) conditional on β = (β1, . . . ,βk) for each i in (1,. . . ,n), we can get
closed form expression for P (zi = c|z−i,β):

∝

{
P (zi = c | z−i)dPoisson(y(si), exp(X(si)βc)), at an existing table labeled c
Vn(|C−i+1)|
Vn(|C−i|) γm(y(si)), if c is a new table

.

where C−i denotes the partition obtained by removing zi and

m(y(si)) =
1

det(V V ′)
1
2

(
p∏
i=1

καi
i

Γ(αi)

)
1

M1

where,

M1 = det([Hβ Q2])

(
n+p∏
i=1

καi
i

Γ(αi)

)
1∫

f(y(si) | 0,V = [Hβ , Q2]
−1
,α,κ)

end for

H Data Generation Processes

The four data generation processes are given as

1. y(si) ∼ Poisson(X1(si)β1zi + X2(si)β2zi), where X1(si), X2(si)
ind∼ Unif(1, 2), i =

1, . . . , n, (β11, β21) = (1, 1), (β12, β22) = (1.5, 1.5).
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2. y(si) ∼ Poisson(X1(si)β1zi +X2(si)β2zi +w(si)), where X1(si), X2(si)
ind∼ Unif(1, 2),

i = 1, . . . , n, (β11, β21) = (1, 1), (β12, β22) = (1.5, 1.5). ω ∼ N(0, σ2
ωH(φ)), where

H(φ) = exp (−φ‖si − sj‖), we set σ2
ω = 0.3 and φ = 0.05.

3. y(si) ∼ Poisson(X1(si)β1zi + X2(si)β2zi), where X1(si), X2(si)
ind∼ Unif(1, 2), i =

1, . . . , n, (β11, β21) = (0.5, 0.5), (β12, β22) = (1, 1), (β13, β23) = (1.5, 1.5).

4. y(si) ∼ Poisson(X1(si)β1zi +X2(si)β2zi +w(si)), where X1(si), X2(si)
ind∼ Unif(1, 2),

i = 1, . . . , n, (β11, β21) = (0.5, 0.5), (β12, β22) = (1, 1), (β13, β23) = (1.5, 1.5). ω ∼
N(0, σ2

ωH(φ)), where H(φ) = exp (−φ‖si − sj‖), we set σ2
ω = 0.3 and φ = 0.05.

I Additional Comparison for Simulation (State of Georgia)

We present additional comparison for simulation section (State of Georgia). We compare our proposed
method to LGP and CAR in two cluster design. In Figure 4, the values above zero indicate that our
method has higher LPML than comparator. The results shown that we have a better result for both
comparator.
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Figure 4: Additional Comparison for Two Cluster Simulation (State of Georgia).

J Additional Simulation for Different Spatial Graph (State of Mississippi)

We provide another simulation design with different spatial graph. This additional analysis is based
on the spatial structure of the state of Mississippi, which contains 82 counties. We consider a different
spatial cluster designs shown in Figure 5. This design consists of two disjoint parts located in the top
and bottom parts of Mississippi.

Two different scenarios are considered. The first scenario does not take into account spatial random
effects, while in the second scenario, spatial random effects are included for each design. The
spatial random effects are assumed to follow a multivariate normal distribution with a mean zero
and exponential covariogram. Based on the estimated number of clusters and Rand Index (RI), the
clustering performance is evaluated. Each replicate is also used to calculate the final number of
clusters estimated. A total of 50 sets of data are generated under different scenarios. We run 3000
iterations of the MCMC chain and burn-in the first 1000 for each replicate.

The results of the comparison of LPML, Rand index, and estimation of the number of clusters for
each design can be found in Table 5. Our proposed method outperforms vanilla MFM with respect
to model fitness and clustering, as demonstrated by the LPML values and Rand index. Additional
comparison to LGP and CAR also presented. In Figure 6, the values above zero indicate that our
method has higher LPML than comparator. The results shown that we have a better result for both
comparator.
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Figure 5: Simulation design with two cluster assignments. (State of Mississippi)

Table 5: Simulation Results including LPML, Rand Index (RI), and number of true cluster cover rate
(CR) by MRF-MFM (optimal) model and MFM model. We provide mean and standard deviation for
both LPML and RI.

Method Scenario LPML RI CR Scenario LPML RI CR

Optimal 1 -295.79 0.9954 100% 2 -291.76 0.9966 100%
(9.29) (0.0179) (10.93) (0.0135)

MFM -819.39 0.9901 98% -727.47 0.9901 96%
(407.15) (0.0257) (272.14) (0.0269)
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