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Abstract

Hardware design space exploration (DSE) aims to find a suitable micro-architecture
for the dedicated hardware accelerators. It is a computationally expensive black-
box optimization problem with more than one conflicting performance indicator.
Surrogate-assisted evolutionary algorithm is a promising framework for expensive
multi-objective optimization problems given its surrogate modeling for handling
expensive objective functions and population-based characteristics that search for
a set of trade-off solutions simultaneously. However, most, if not all, existing
studies mainly focus ‘regular’ Pareto-optimal fronts (PFs), whereas the PF is
typically irregular in hardware DSE. In the meanwhile, the gradient information
of the differentiable surrogate model(s) is beneficial to navigate a more effective
exploration of the search space, but it is yet fully exploited. This paper proposes
a surrogate-assisted evolutionary multi-objective optimization based on multiple-
gradient descent (MGD) for hardware DSE. Empirical results on both synthetic
problems with irregular PFs and real-world hardware DSE cases fully demonstrate
the effectiveness and outstanding performance of our proposed algorithm.

1 Introduction

Dedicated hardware accelerator has become an emerging area in machine learning Lee and Verma
[2013], Chen et al. [2016], Auten et al. [2020]. Hardware design space exploration (DSE) Srinivasan
et al. [1998], Ipek et al. [2006], Nardi et al. [2019] involves finding a suitable micro-architecture for
the dedicated hardware accelerator. This is in practice computationally expensive, e.g., the synthesis
and implementation for a deep binary neural network design takes hours on the field programmable
gate arrays (FPGAs) Zhou et al. [2017]. Furthermore, it is not uncommon that a hardware engineer
needs to consider more than one performance indicator, while they are usually conflicting with each
other, as known as multi-objective optimization problems (MOPs). For example, the CPU frequency
and the energy consumption are two confrontational indicators in a CPU design Bai et al. [2021].

Due to the population-based characteristics, evolutionary algorithms (EAs) have been widely recog-
nized as an effective approach for MO Deb [2001]. One of the major criticisms of EAs is its daunting
amount of function evaluations (FEs) required to obtain a set of reasonable solutions. To mitigate
this issue, data-driven evolutionary optimization, guided by surrogate models of computationally
expensive objective functions, have become as a powerful approach for expensive optimization Jin
et al. [2019]. However, most, if not all, existing studies are mainly designed and validated on synthetic
benchmark test problems characterized as ‘regular’ triangle-like Pareto-optimal fronts (PFs). Unfor-
tunately, this is unrealistic in the hardware DSE scenario as PFs are featured as incomplete, and/or
badly-scaled, it is surprising that the research on handling MOPs with irregular PFs is lukewarm in
the context of data-driven EMO. In addition, the evolutionary operators are directly derived from
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Figure 1: The flow chart of the proposed SAEMO/MGD.

the EA (e.g., crossover and mutation Deb and Agrawal [1995] and differential evolution Storn and
Price [1997]). The gradient information of differentiable surrogate model(s) is beneficial to navigate
a more effective exploration of the search space, but it is yet fully exploited.

Bearing these considerations in mind, this paper proposes a surrogate-assisted evolutionary multi-
objective optimization based on multiple-gradient descent (MGD) Désidéri [2014] for multi-objective
hardware DSE. Our basic idea is to leverage the latent information of surrogate models, gradient(s) in
particular, to explore promising candidate solutions and recommend a batch of promising candidate
solutions for parallel expensive function evaluations (FEs), each of which is a synthesis and imple-
mentation of a design point. Empirical results on both synthetic problems with irregular PFs and
real-world hardware DSE cases fully demonstrate the effectiveness and outstanding performance of
our proposed algorithm.

2 Proposed Method

This section briefly introduce the implementation of our proposed surrogate-assisted evolution-
ary multi-objective optimization based on multiple-gradient descent (dubbed SAEMO/MGD). As the
flowchart shown in Figure 1, SAEMO/MGD starts with an initialization step based on an experi-
mental design method such as Latin hypercube sampling Santner et al. [2018]. Note that these initial
samples will be evaluated based on the computationally expensive objective functions.

• Surrogate modeling: This step builds a surrogate model by using the Gaussian process
regression Rasmussen and Williams [2006] for each expensive objective function based on
the samples evaluated on this expensive objective function so far. Here we use radial basis
function (RBF) kernel because it is infinitely differentiable. Since there are ordinal variables
in the multi-objective hardware DSE, this paper applies a simple rounding method to replace
the continuous variable by its closest integer.

• MGD-based evolutionary search: This step aims to search for a set of promising

candidate solutions P “ tx̂iuÑi“1, which are assumed to be an appropriate approximation to
the PF, based on the surrogate model built in the surrogate modeling step. In a nutshell,
the basic idea of MGD Désidéri [2014] is to iteratively update a solution so that all objective
functions can thus be improved equally. More detailed discussion of this step can be found
in Section 1 of the supplemental document1.

• Infill criterion: This step aims to pick up 1 ď ξ ! Ñ promising solutions from P for
expensive FEs. These newly evaluated solutions are then used to update the training dataset
for the next iteration. Since FEs in the hardware DSE can be carried out in parallel given
the availability of platform, such batched recommendation provides an actionable way for
parallelization. In this paper, we propose a simple infill criterion based on the individual
Hypervolume Zitzler and Thiele [1999] contribution (IHV). Specifically, the IHV of each
candidate solution x P P is calculated as:

IHVpxq “ HVpPq ´ HVpPztxuq, (1)

where HVpPq evaluates the Hypervolume of P . Then, the top ξ solutions in P with the
largest IHV are picked up for the expensive FEs.

1The supplemental document is located in https://tinyurl.com/2p9kuezm.
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Figure 2: Solutions obtained by SAEMO/MGD, HyperMapper and ParEGO on ZDT3 (first row), WFG43
(second row) and WFG44 (third row). The PF is represented as black dots •. The non-dominated
solutions are represented as blue cirles •, while those dominated ones are shown as gray circles •.

3 Empirical Study

In this section, we empirically investigate the performance of our proposed SAEMO/MGD compared
against HyperMapper Nardi et al. [2019] and ParEGO Knowles [2006]. The prior one is a widely rec-
ognized DSE approach and the latter one is a popular surrogate-assisted evolutionary multi-objective
optimization algorithm in the literature. Three synthetic benchmark test problems ZDT3 Zitzler
et al. [2000], WFG43 and WFG44 Huband et al. [2006] with irregular PFs and several hardware
DSE cases are used to constitute our benchmark suite. To have a quantitative evaluation of the
performance of different algorithms, we use the widely used Hypervolume (HV) as the performance
metric. To have a statistical interpretation of the significance of comparison results, we apply the
widely used non-parametric Wilcoxon signed-rank test Wilcoxon [1945] at the 0.05 significance
level to conduct a pairwise comparison. The experimental setup is delineated in Section 2 of the
supplemental document.

3.1 Results on synthetic benchmark test problems

From the plots of solution distribution shown in Figure 2 and the comparison of HV values shown in
Table 4 in the supplemental document, we can clearly see the superior performance of our proposed
SAEMO/MGD over the other two peer algorithms. More specifically, as for ZDT3, only SAEMO/MGD
can find non-dominated solutions on all five disconnected PF segments. As for WFG43 with a strong
convex PF, the non-dominated solutions obtained by SAEMO/MGD are on the PF and they dominate
those found by HyperMapper and ParEGO, which are crowded on the ‘knee’ region away from the
PF. As for WFG44 with a strong concave PF, most non-dominated solutions obtained by SAEMO/MGD
are on the PF whereas the other two peer algorithms are struggling to converge to the PF.

3.2 Results on hardware DSE cases

In this subsection, we consider optimizing the mirco-architecture of three typical dedicated hardware
accelerators including the general matrix multiplication (GEMM), a common operator in linear
algebra, the stochastic gradient descent (SGD), a gradient-based optimizer widely used for training
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Table 1: The number of parameters and the size of the design space for the DSE problems
DSE Problem Number of parameters Size of the design space

GEMM 6 2.7 ˆ 104

SGD 5 3.3 ˆ 104

k-means 6 8.9 ˆ 103
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Figure 3: Solutions obtained by SAEMO/MGD, HyperMapper and ParEGO for GEMM (left), SGD,
k-means. Both axis are in a log scale. The x-axis is compute logic, reported as a percentage of
the total LUT capacity of the FPGA. The y-axis is the cycles taken to solve the problem. The
non-dominated solutions are represented as solid circles •, squares ‚ or triangles Ĳ, respectively;
whereas those dominated ones are shown as the corresponding open shapes ◦, ˝, Ÿ, respectively.

neural networks, and the k-means algorithm. Our experiments are developed upon Spatial in the
Xilinx VIRTEX VC707. In particular, Spatial is a high-level synthesis (HLS) tool for the design
of accelerators implemented on reconfigurable spatial architectures such as FPGAs Koeplinger
et al. [2018]. It facilitates engineers to explore the design space including the hardware-specific
abstractions for control, memory, and design tuning. In our experiments, we consider optimizing
two confrontational objective functions including the logic utilization and the execution cycles. The
number variables and the size of the design space are listed in Table 1 while more detailed information
can be found in Section 2.2 of the supplementary document. Each algorithm is allocated with 10
initialized samples and the computational budget is limited to 40 function evaluations.

From the results shown in Figure 3 and Table 2, it is clear to see that our proposed SAEMO/MGD is
the most competitive algorithm as the non-dominated solutions always dominate those obtained by
HyperMapper and ParEGO. It is interesting to note that HyperMapper and ParEGO are comparable
for the GEMM design while HyperMapper is better than ParEGO on the SGD design and the result
is flipped on the k-means design.

Table 2: Comparison results of Hypervolume on the hardware DSE problems
DSE Problems SAEMO/MGD Hypermapper ParEGO

GEMM 0.979(2.3E-3) 0.957(3.1E-3): 0.959(2.5E-3):

SGD 0.970(1.3E-4) 0.942(9.4E-5): 0.715(7.6E-4):

K-means 0.997(5.7E-4) 0.835(8.9E-5): 0.986(4.8E-4):

According to Wilcoxon rank sum test at the 0.05 significance level, : indicate that the corresponding algorithm
is significantly worse than SAEMO/MGD .

4 Conclusion

This paper develops a surrogate-assisted evolutionary multi-objective optimization based on multiple-
gradient descent to solve hardware DSE problems featured by the computationally expensive objective
function evaluations and irregular PFs. Our proposed algorithm has shown competitive performance
on both synthetic benchmark test problems with irregular PFs and three hardware DSE cases.
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A MGD-based Evolutionary Search

The working mechanism of this MGD-based evolutionary search step is given in Algorithm 1.

Algorithm 1: MGD-based Evolutionary Search

Input: Surrogate models for objective functions Fpxq “ pf1pxq, ¨ ¨ ¨ , fmpxqqJ

Output: Candidate solutions set P
1 Initialize a candidate solution set P “ tx̂iuÑi“1 based on Latin hypercube sampling;
2 while stopping criterion is not met do
3 Generate set of offspring solutions Q from P based on SBX crossover;
4 for each solution x̂i P Q do
5 Calculate the gradients ∇gjpx̂iq of surrogate models at x̂i, where j P t1, ¨ ¨ ¨ ,mu;
6 Find a nonnegative unit vectorw˚ “ pw˚

1 , ¨ ¨ ¨ , w˚
mqJ that satisfies:

w˚ “ argmin
w

›

›

›

›

m
ÿ

j“1

wj∇gjpx̂iq

›

›

›

›

, (2)

where w “ pw1, ¨ ¨ ¨ , wmqJ,
řm

i“1 wi “ 1 and wi ě 0, i P t1, ¨ ¨ ¨ ,mu;
7 Obtain a directional vector u˚ as:

u˚ “

$

’

’

’

&

’

’

’

%

argmax
1ďjďm

›

›∇gjpx̂iq
›

›, if
řm

j“1 w
˚
j ∇gjpx̂iq “ 0

argmin
1ďjďm

›

›∇gjpx̂iq
›

›, if Di, j P t1, ¨ ¨ ¨ ,mu, x∇gjpx̂iq,∇gjpx̂iqy ą δ
řm

j“1 w
˚
j ∇gjpx̂iq, otherwise

(3)

where x˚, ˚y is the acute angle between vectors, and δ “ min
!

›

›∇gjpx̂iq
›

›

)m

j“1
;

8 Exploit x̂ along the direction of MGD Q Ð QŤ

tx̂i ` ηu˚uztx̂iu

9 Amend the updated solution to P Ð Q;

As discussed in Désidéri [2014], the multiple-gradient descent (MGD) is a natural extension of the
single-objective gradient to finding a PF. In a nutshell, its basic idea is to iteratively update a solution
x along a ‘specified’ direction so that all objective functions can thus be improved.

Figure 4 gives an illustrative example for each of the three conditions given in equation (3) when
m “ 2. More specifically, when the gradients of two objective functions are in opposite directions
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Figure 4: Illustrative examples of the calculation of u˚ in equation (3).

as shown in Figure 4(a), u˚ is chosen as the one with a larger Euclidean norm. If the gradients are
too close to each other as shown in Figure 4(b), u˚ is chosen as the one with a smaller Euclidean
norm. Different from the linear weighted aggregation, the MGD works for non-convex PF. Therefore,
we can expect a descent diversity in case the initial population is well distributed as the illustrative
example shown in Figure 5. To be more specific, Figure 5(a) and Figure 5(b) shows the scenario in
which solutions have not converged to PF. In this case, the direction of u˚ points toward PF with
all objective functions improving equally. If the solutions are well distributed in decision space like
Figure 5(a), the solutions will maintain the diversity when converging to the PF like Figure 5(b).
Figure 5(c) shows the scenario in which solutions have already converged to PF. In this case, the
direction of u˚ points alongside the PS.
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Figure 5: Illustrative examples of working mechanism of the MGD-based evolutionary search
step.

B Experimental Setup

This section introduces our experimental setup including the definitions of the synthetic benchmark
test problems along the real-world hardware DSE problems, the peer algorithms along with their
parameter settings, and the performance metric and the statistical test.

B.1 Benchmark Test Problems

This paper considers ZDT3 Zitzler et al. [2000], DTLZ43 and WFG44 Wang et al. [2015] to constitute
our synthetic benchmark test problems. Note that all these problems are with irregular PF. Specifically,
the PF of ZDT3 consists of five disconnected segments, the PF of WFG43 is strong concave while
that of WFG44 is strong convex.

For the ZDT3 problem, it is mathematically defined as:

minimize f1pxq “ x1

minimize f2pxq “ gpxq

´

1 ´
a

x1{gpxq ´ x1{gpxq sinp10πx1q

¯

, (4)

where

gpxq “ 1 `
9

n ´ 1

n
ÿ

i“2

xi, (5)
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Figure 6: The PF for ZDT3 (left, disconnected), WFG43 (center, strong concave) and WFG44 (right,
strong convex).

where n is the number of variables.

For the WFG43 problem, it is mathematically defined as:

minimize f1pxq “

´

sinpt1pxqπ{2q sin
`

řn
i“2 tipxqπ{2

˘

¯0.25

minimize f2pxq “

´

1 ´ sin
`

t1pxqπ{2
˘

¯0.25 , (6)

where

tpxq “
1 ` cos

`

p4A ` 2qπp0.5 ´
|x´C|

2ptC´xu`Cq
q
˘

` 4Bp
|x´C|

2ptC´xu`Cq
q2

B ` 2
, (7)

where A “ 30, B “ 10, C “ 0.35, and

z1 “ x1{2
zn “ xn{p2nq

zi “
`

xi{p2iq ´ 0.5
˘

˚ zn ` 0.5
, (8)

where i P t2, ¨ ¨ ¨ , n ´ 1u.

For the WFG44 problem, it is mathematically defined as:

minimize f1pxq “

´

1 ´ cospt1pxqπ{2q sin
`

řn
i“2 tipxqπ{2

˘

¯4

minimize f2pxq “

´

sin
`

t1pxqπ{2
˘

¯4 , (9)

where

tpzq “
1 ` cos

`

p4A ` 2qπp0.5 ´
|z´C|

2ptC´zu`Cq
q
˘

` 4Bp
|z´C|

2ptC´zu`Cq
q2

B ` 2
(10)

where A “ 30, B “ 10, C “ 0.35, and

z1 “ x1{2
zn “ xn{p2nq

zi “
`

xi{p2iq ´ 0.5
˘

˚ zn ` 0.5
, (11)

where i P t2, ¨ ¨ ¨ , n ´ 1u.

The Pareto fronts of ZDT3, WFG43 and WFG44 are given in Figure 6.

B.2 Hardware DSE Problems

In our experiments, we also consider three hardware DSE problems.

• General matrix multiply (GEMM): The hardware accelerated GEMM uses the blocking
technique. We consider a M ˆ K matrix A multiply with a K ˆ N matrix B. We will
split A into tilem ˆ tilek and B into tilek and tilen as shown in Figure 7. As a result,
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the multiplying process is folded into three levels of loops. The first three variables are
tilem, tilek and tilen. The other three p1, p2 and p3 indicate whether these loops should
be pipelining. Table 3 shows the detail of the variables. To validate the hardware design,
we randomly generate 512 ˆ 512 matrix multiply with 512 ˆ 512 matrix and test it on the
hardware.

A

B

CM

K

N

K

ti
le

m

tilek

ti
le

k

tilek

Figure 7: The blocking tecnique in GEMM.

Table 3: The parameters and their range for the GEMM case
variables range

tilem 8,12, ¨ ¨ ¨ , 60, 64
tilen 8,12, ¨ ¨ ¨ , 60, 64
tilek 8,12, ¨ ¨ ¨ , 60, 64
p1 true,false
p2 true,false
p3 true,false

• Stochastic gradient descent (SGD): The hardware accelerated SGD is based on the paral-
lelized SGD ?. We consider optimizing a D dimensional vector x with gradients. As shown
in Figure 8, the first variable is tileSize, which indicates the size of the small piece of x
updated in one execution cycle. Another two variables ip and op indicate the inner loop size
and the outer loop size. The inner loop size ip is the number of tiles executed in paralle. It
is worth noting that load and store are not included in the inner loop. op is the number of
the inner loops, as well as load and store units, executed in parallel. The algorithm includes
two level of loops. The last two variables p1, p2 indicate whether these loops should be
pipelining. Table 4 shows the detail of the variables. To validate the hardware design, we
randomly generate 512-bit vectors to be optimized and test them on the hardware.

• k-means: The hardware accelerated k-means has six variables. As the k-means involves
penalty of data, one of the main challenges for this hardware is load and store the data. The
first variable BN is the number of points to load/store together. The second variable ip
is the number of points calculated in parallel (inner loop). The third one op is the size of
outer loops, which include inner loop and load and store unit. The algorithm includes three
level of loops. The last three variables p1, p2 and p3 indicate whether these loops should be
pipelining.

Due to the resource constraint on dedicated hardware like FPGAs, GEMM, SGD and k-Means usually
cannot be done in one operation. We need to split them into multiple operations (a.k.a. execution
cycles). In the meanwhile, a LUT, which stands for a lookup table used to determine the output for a
given input. The hardware design uses LUTs to implement the functionality. Higher LUTs utilization
means higher power consumption and larger chip size. As a result, we try to achieve a trade-off
between the execution cycles and the LUTs utilization.

B.3 Peer Algorithms and Parameter Settings

To validate the competitiveness of our proposed algorithm, we compare its performance with
HyperMapper Nardi et al. [2019] and ParEGO Knowles [2006]. The prior one is a widely rec-
ognized DSE approach and the latter one is a popular surrogate-assisted evolutionary multi-objective
optimization algorithm in the literature. We do not intend to delineate their working mechanisms
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Figure 8: The parallelized SGD.

Table 4: The parameters and their range for the SGD case
variables range

tileSize 4,8, ¨ ¨ ¨ , 124, 128
ip 1,2, ¨ ¨ ¨ , 15, 16
op 1,2, ¨ ¨ ¨ , 15, 16
p1 True or False
p2 True or False

Table 5: The parameters and their range for the K-Means case
variables range

BN 96,192, ¨ ¨ ¨ , 960
ip 8,16, ¨ ¨ ¨ , 120, 128
op 2,4,8, ¨ ¨ ¨ , 64, 128
p1 true,false
p2 true,false
p3 true,false

here while interested readers are referred to their original papers for details. The parameter settings
are listed as follows.

• Number of function evaluations (FEs): The initial sample size is set to 11 ˆ n ´ 1 for all
algorithms and the maximum number of FEs is capped as 250 where n is the number of
variables.

• Reproduction operators: The parameters associated with the simulated binary crossover Deb
and Agrawal [1994] and polynomial mutation Deb and Goyal [1996] are set as pc “ 1.0,
ηc “ 20, pm “ 1{n, ηm “ 20.

• Kriging models: As for the algorithms that use Kriging for surrogate modeling, the corre-
sponding hyperparameters of the MATLAB Toolbox DACE Nielsen et al. [2002] is set to be
within the range r10´5, 105s.

• Batch size ξ: It is set as ξ “ 5 for our proposed algorithms.
• Number of repeated runs: Each algorithm is independently run on each test problem for 31

times with different random seeds.
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