Introduction

We extend the Gaussian process (GP) framework into a new class of time-
changed GPs that allow for straightforward modelling of heavy-tailed non-
Gaussian behaviours, while retaining a tractable conditional GP structure
through an infinite mixture of non-homogeneous GPs representation. We
present Markov chain Monte Carlo inference procedures for this model and
demonstrate the potential benefits compared to a standard GP.

A non-Gaussian process (NGP) prior on functions can be obtained by
randomly transforming the inputs using a subordinator Lévy process and
carrying out GP regression on the transformed input space. The resulting
posterior distribution follows a non-Gaussian Lévy process.

The latent layer that is obtained by the random transformation of the input
space represents the random distances between any two points on an input
space. A subordinator process prior on the transformation has non-negative,
non-decreasing sample paths with independent and stationary increments
and no fixed discontinuities [1]. Thus, the monotonicity of the input space is
preserved.

Regression model

Given a set of input-output pairs {x;, y;} such that y; = f(x;) + ¢;, consider a
latent input transformation such that x; is mapped to W (x;) where {W(x);x €
X} is a subordinator. The associated prior on the transformation function is
then defined as p(W).

Given W (x), consider a conditional GP prior over f such that:

where my, (x) = m(W(x)), Ky (x',x) = K(W(x’),W(x)) =K((W(x") —W(x)])
and K(-,-) is a stationary kernel function e.g. squared exponential or Matérn.
The joint distribution over the product space of f and W characterises the
NGP prior. Given a set of observations y,.,, the posterior on the joint space
can be found as

PVl Do (fFIW)p(W)
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The conditional GP structure of a NGP induces a posterior mean my,(-) and

P(f, lelzn) —

kernel function Ky, (-,) that can be evaluated analytically, i.e.
p(flyln' W)Ngfp(n_/lW'l?W (:))

The NGP posterior distribution over the function space is found as

(1Y) = f DY WP (W [y 1) AW

where p(W|y;.,) is the posterior distribution of the subordinator process.
Inferring p(W|y;.,) and hence p(f|y:.n) is analytically intractable, however
using approximate inference methods allow for straightforward extensions of
the model and full Bayesian inference.
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Inference in NGP models

Shot-noise simulation methods
A subordinator process W (x) can represented as an infinite series as:

W(x) = ZYL-]I(VL-Sx)

Where {V; € X,};2, are i.i.d. uniform random variables independent of {Y;}
that represent the position of jumps, and {Y;};2, are the jump sizes
characterised by the Lévy measure Q and X, defines a subset of the input
space. [3] proves the almost sure convergence of this series to W(x) and a
more detailed review can be found in [2]. Alg. 1 provides a method for the
simulation of jump sizes for a tempered stable process.
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Fig. 1: Random subordinator sample paths associated with gamma, tempered stable and generalised inverse Gaussian
processes.

Approximate inference

A Gibbs sampler approximating samples from p(W|y;.,) can be implemented
by simulating the associated bivariate random points that define the jump size
and position on small disjoint intervals 7 = (xj,xl) conditioned on the previous

sample points in —7 = X\ (xj,xl) and observations. Progressively simulating

these points such that the whole input space is covered leads to approximate
samples from the target distribution. The corresponding algorithms outlined in
Algorithms 2 and 3.

The resulting samples {W*)} are individually associated with conditional GP
posterior functions p(f|y..,, W) that are completely defined through their
mean m,, ) and covariance K,k functions. Such a collection forms a
Gaussian mixture distribution, and the mean and covariance of the
corresponding mixture density can be obtained as

1 _
]Ef|3’1n N z mW(k) = mf|3’1:n

1 . . . T
Covﬂyl:n(f) — N Z[Kw(k) + (mw(k) o mf|3’1:n)(mW(k) B mf|3’1:n) ]
k=1

where N is the number of samples and E¢, _[f], Covep,. (f) define the
posterior mean and covariance of the random function f.

References

[1] W. Feller. An Introduction to Probability Theory and its Applications. Wiley Mathematical Statistics Series v.2.
Wiley, 1996.

[2] S. Godsill and Y. Kindap. “Point process simulation of generalized inverse Gaussian processes and estimation of
the Jaeger integral”. In: Statistics and Computing 32.1 (Dec. 2021), p. 13.

[3] J. Rosinski. “Series Representations of Lévy Processes from the Perspective of Point Processes”. In: Lévy
Processes: Theory and Applications. Boston, MA: Birkhauser Boston, 2001, pp. 401-415.

cg.(.\,

NEURAL INFORMATION
PROCESSING SYSTEMS

k,

Sampling Algorithms

Algorithm 1 Generation of the jumps of a tempered stable process with
Lévy density Qrs(x) = Cx~1~%e~P* where « is the tail parameter and £ is
the tempering parameter.

1. Assign Ny = 0,
2. Generate the epochs of a unit rate Poisson process, {I;;i = 1,2,3, ...},
3. Fori=1,23,..

o Compute x; = (“Tri)_l/a,

o With probability e=#*i, accept x; and assign Ny = Nrg U ;.

Algorithm 2 Simulating sample paths from the proposal density p(W,|W_.).

Given a random length set Ny, = {Vi(k),Ml.(k)} and an interval (x;,x;) € X,

1. Simulate {V,", M.(')} with rate |x; — x;| using Alg. 1,

2. Remove all points {V(k) M( )} from Ny, such that x; < V( ) < x; and add
v M, ie Ny =Ny v v, MO,

3. Substitute the points of Ny, into Eq. 1 to obtain the proposed sample
path W),

Algorithm 3 MH-within-Gibbs sampler for p(W|y;.,,).

1. Initialise W by simulating {V;, M;} from the associated bivariate point
process using Alg. 1,
2. Analytically evaluate m,, ), K, © which define the conditional GP

posterior p(f|y,.,, W(®) and the conditional likelihood p(yy.,|W @),
3. For N times, iterate over t; € X where Ulerj =X,
(a) Using 7; and the points {Vi(k),Ml.(k)} associated with W ),
sample a proposed sample path W) using Alg. 2,
(b) Evaluate 7,1, K,,,c» and p(y,.,|W "),
(c) With probability a(W "), W *)) the proposal is accepted and
W&+ — () otherwise reject and set W k+D = ()
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