
Non-Gaussian Process Regression

Introduction
We extend the Gaussian process (GP) framework into a new class of time-
changed GPs that allow for straightforward modelling of heavy-tailed non-
Gaussian behaviours, while retaining a tractable conditional GP structure
through an infinite mixture of non-homogeneous GPs representation. We
present Markov chain Monte Carlo inference procedures for this model and
demonstrate the potential benefits compared to a standard GP.
A non-Gaussian process (NGP) prior on functions can be obtained by
randomly transforming the inputs using a subordinator Lévy process and
carrying out GP regression on the transformed input space. The resulting
posterior distribution follows a non-Gaussian Lévy process.
The latent layer that is obtained by the random transformation of the input
space represents the random distances between any two points on an input
space. A subordinator process prior on the transformation has non-negative,
non-decreasing sample paths with independent and stationary increments
and no fixed discontinuities [1]. Thus, the monotonicity of the input space is
preserved.

A subordinator process 𝑊(𝑥) can represented as an infinite series as:

𝑊 𝑥 = &
!"#

$

𝑌! 𝕀 (𝑉! ≤ 𝑥)

Where 𝑉! ∈ 𝒳% !"#
$ are i.i.d. uniform random variables independent of {𝑌!}

that represent the position of jumps, and 𝑌! !"#
$ are the jump sizes

characterised by the Lévy measure 𝑄 and 𝒳% defines a subset of the input
space. [3] proves the almost sure convergence of this series to 𝑊 𝑥 and a
more detailed review can be found in [2]. Alg. 1 provides a method for the
simulation of jump sizes for a tempered stable process.

Inference in NGP models
Shot-noise simulation methods 

Regression model
Given a set of input-output pairs 𝑥! , 𝑦! such that 𝑦! = 𝑓 𝑥! + 𝜀!, consider a
latent input transformation such that 𝑥! is mapped to 𝑊 𝑥! where {𝑊 𝑥 ; 𝑥 ∈
𝒳} is a subordinator. The associated prior on the transformation function is
then defined as 𝑝(𝑊).

Given 𝑊(𝑥), consider a conditional GP prior over 𝑓 such that:

𝑝 𝑓 𝑊 ~ 𝒢𝒫(𝑚& 𝑥 , 𝐾&(𝑥', 𝑥))

where 𝑚& 𝑥 = 𝑚 𝑊 𝑥 , 𝐾& 𝑥', 𝑥 = 𝐾 𝑊 𝑥' ,𝑊 𝑥 = 𝐾( 𝑊 𝑥' −𝑊 𝑥 )
and 𝐾(=,=) is a stationary kernel function e.g. squared exponential or Matérn.
The joint distribution over the product space of 𝑓 and 𝑊 characterises the
NGP prior. Given a set of observations 𝑦#:) the posterior on the joint space
can be found as

𝑝 𝑓,𝑊 𝑦#:) =
𝑝 𝑦#:) 𝑓 𝑝 𝑓 𝑊 𝑝(𝑊)

𝑝(𝑦#:))

The conditional GP structure of a NGP induces a posterior mean >𝑚& = and
kernel function >𝐾& =,= that can be evaluated analytically, i.e.
𝑝 𝑓 𝑦#:) ,𝑊 ~𝒢𝒫( >𝑚& , >𝐾& =,= ).

The NGP posterior distribution over the function space is found as

𝑝 𝑓 𝑦#:) = ?𝑝 𝑓 𝑦#:) ,𝑊 𝑝 𝑊 𝑦#:) 𝑑𝑊

where 𝑝(𝑊|𝑦#:)) is the posterior distribution of the subordinator process.
Inferring 𝑝(𝑊|𝑦#:)) and hence 𝑝(𝑓|𝑦#:)) is analytically intractable, however
using approximate inference methods allow for straightforward extensions of
the model and full Bayesian inference.

Sampling Algorithms
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Fig. 1: Random subordinator sample paths associated with gamma, tempered stable and generalised inverse Gaussian 
processes.

A Gibbs sampler approximating samples from 𝑝 𝑊 𝑦#:) can be implemented
by simulating the associated bivariate random points that define the jump size
and position on small disjoint intervals 𝜏 = 𝑥* , 𝑥+ conditioned on the previous
sample points in −𝜏 = 𝒳 ∖ 𝑥* , 𝑥+ and observations. Progressively simulating
these points such that the whole input space is covered leads to approximate
samples from the target distribution. The corresponding algorithms outlined in
Algorithms 2 and 3.

The resulting samples {𝑊(-)} are individually associated with conditional GP
posterior functions 𝑝(𝑓|𝑦#:) ,𝑊(-)) that are completely defined through their
mean >𝑚&(") and covariance >𝐾&(") functions. Such a collection forms a
Gaussian mixture distribution, and the mean and covariance of the
corresponding mixture density can be obtained as

𝔼/|1$:& 𝑓 =
1
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1
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[>𝐾& " + >𝑚& " −𝑚/|1$:& >𝑚& " −𝑚/|1$:&
3]

where 𝑁 is the number of samples and 𝔼/|1$:& 𝑓 , ℂ𝑜𝑣/|1$:& 𝑓 define the
posterior mean and covariance of the random function 𝑓.

Approximate inference

Algorithm 1 Generation of the jumps of a tempered stable process with 
Lévy density 𝑄34 𝑥 = 𝐶𝑥5#56𝑒578 where 𝛼 is the tail parameter and 𝛽 is 
the tempering parameter.

1.    Assign 𝑁34 = ∅, 
2.    Generate the epochs of a unit rate Poisson process, Γ!; 𝑖 = 1,2,3, … ,
3.    For 𝑖 = 1,2,3, …

⋄ Compute 𝑥! =
69'
:

5#/6
,

⋄ With probability 𝑒578', accept 𝑥! and assign 𝑁34 = 𝑁34 ∪ 𝑥!.

Algorithm 2 Simulating sample paths from the proposal density 𝑝(𝑊<|𝑊5<).

Given a random length set 𝑁& = {𝑉!
- , 𝑀!

(-)} and an interval 𝑥* , 𝑥+ ∈ 𝒳,

1. Simulate {𝑉!
' , 𝑀!

(')} with rate |𝑥* − 𝑥+| using Alg. 1,

2. Remove all points {𝑉!
- , 𝑀!

(-)} from 𝑁& such that 𝑥* < 𝑉!
- < 𝑥+ and add 

{𝑉!
' , 𝑀!

(')}, i.e. 𝑁& = 𝑁& ∪ {𝑉!
' , 𝑀!

' },
3. Substitute the points of 𝑁& into Eq. 1 to obtain the proposed sample 

path 𝑊(').

Algorithm 3 MH-within-Gibbs sampler for 𝑝 𝑊 𝑦#:) .

1. Initialise 𝑊(%) by simulating {𝑉! , 𝑀!} from the associated bivariate point 
process using Alg. 1,

2. Analytically evaluate >𝑚&((), >𝐾& ( which define the conditional GP 
posterior 𝑝(𝑓|𝑦#:) ,𝑊(%)) and the conditional likelihood 𝑝 𝑦#:) 𝑊 % ,

3. For 𝑁 times, iterate over 𝜏* ∈ 𝒳 where ⋃*"#
= 𝜏* = 𝒳,

(a) Using 𝜏* and the points {𝑉!
- , 𝑀!

(-)} associated with 𝑊(-), 
sample a proposed sample path 𝑊(') using Alg. 2,
(b) Evaluate >𝑚&()), >𝐾& ) and 𝑝(𝑦#:)|𝑊(')),
(c) With probability 𝛼 𝑊 ' ,𝑊 - the proposal is accepted and 
𝑊(->#) = 𝑊('), otherwise reject and set 𝑊(->#) = 𝑊(-).
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