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Abstract

Standard GPs offer a flexible modelling tool for well-behaved processes. However,
deviations from Gaussianity are expected to appear in real world datasets, with
structural outliers and shocks routinely observed. In these cases GPs can fail to
model uncertainty adequately and may over-smooth inferences. Here we extend the
GP framework into a new class of time-changed GPs that allow for straightforward
modelling of heavy-tailed non-Gaussian behaviours, while retaining a tractable
conditional GP structure through an infinite mixture of non-homogeneous GPs
representation. The conditional GP structure is obtained by conditioning the
observations on a latent transformed input space and the random evolution of the
latent transformation is modelled using a Lévy process which allows Bayesian
inference in both the posterior predictive density and the latent transformation
function. We provide Markov chain Monte Carlo inference procedures for this
model and demonstrate the potential benefits compared to a standard GP in detail
in the appendix.

1 Introduction

The design of kernel functions that are able to represent a wide range of characteristics and make
consistent generalisations is a fundamental area of research. Some recent work in this area include
modelling the kernel via spectral densities that are scale-location mixtures of Gaussians [1], and
similarly using Lévy process priors over adaptive basis expansions for the spectral density [2].
Spectral kernels are generalised to non-stationary kernels in [3]. For stationary time series models, a
prior over nonparametric kernels can be defined through a separate GP [4].

Extensions to the standard GP model can be made by directly modelling the covariance matrix
as a stochastic process [5], assuming heteroscedastic noise on the observations and carrying out
variational inference [6], or learning nonlinear transformations of the observations such that the latent
transformed observations are modelled well by a GP [7, 8]. Nonstationarity in the measurement
process can be expressed as a product of multiple GPs [9] and heavy-tailed observations may be
modelled through the Student-t process where the predictive kernel function depends on the values of
the observations [10], unlike the standard GP where the kernel is determined only by the values of the
input set. Particularly relevant extensions of GP models are presented in [11] where the input space is
locally modelled by separate GPs, and string GPs [12] introduce link functions between local GPs
such that the global process is still a GP and provides efficient inference methods on large data sets.
In [13, 14] a latent space is defined between the inputs and observations through a separate GP and a
class of bounded functions in [0, 1], respectively. In [15] the inputs are assumed to be unobserved
and integrated out using a variational approach which leads to deep GPs [16].

By designing expressive covariance functions or stacking multiple GPs in structured arrangements,
the GP framework produces accurate predictive models in numerous application domains. However,
these models are limited by their Gaussianity assumption such that the local patterns learned through
these models are highly dependent on particular observations instead of learning the overall dynamics
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of the data generating system. A more natural and interpretable way to define complex relationships
may be to assume that the underlying random function is non-Gaussian which yields more sparse
representations [17].

In this work, we present a novel approach to modelling non-Gaussian dynamics by constructing a
non-Gaussian process (NGP) such that the observations form a conditional GP that is conditioned
on a latent input transformation function that is separately modelled as a Lévy process. Building on
the definition of a stationary kernel, the latent layer between the input and output spaces represent
the random distances between any two points on an input space. In order to define the distribution
of random distances without referring to a specific origin, and in order to maintain monotonicity of
the input space transformation, the latent space of transformation functions is modelled by a special
class of Lévy process called a subordinator that is non-negative and non-decreasing. Such a process
is characterised by the distribution of its stationary and independent increments which as a result
defines a probability distribution over the distance between any two input values. Making random
monotonic transformations of input values allow the kernel to adapt to the local characteristics of
an input space or in other words to the varying rate of change in the observations and the learned
subordinator provides uncertainty estimates over the variation of the observed process everywhere on
its domain.

In this paper we focus principally upon 1-dimensional GPs for the sake of brevity, but we emphasise
that our approach can be readily extended to multiple dimensions, as described throughout the text
and illustrated in the experimental results.

NGPs are related to continuous-time stochastic volatility models studied in the mathematical finance
literature to model the behaviour of a stochastic process which has a randomly distributed variance
[18]. The time-change operation defined for continuous-time stochastic processes is a standard
approach to building stochastic volatility models. A common example is the time-changed Brownian
motion where the time-change is chosen to be a subordinator and the time-changed motion produces
a Lévy process [19]. In such a model, the process is conditionally a Brownian motion i.e. the integral
of a white-noise GP. Similarly, our construction of a stationary NGP follows a GP conditioned on
the latent values of a subordinator, thus it is a time-changed GP. Particular non-Gaussian behaviour
can be expressed through the characterisation of a subordinator, examples include the stable law,
normal-tempered stable, and generalised hyperbolic (including Student-t) processes. Hence, NGPs
provide a flexible and expressive probabilistic framework for nonparametric learning of functions.

2 Probabilistic model

Define a non-negative, non-decreasing stochastic process {W (t)}t≥0 such that it randomly maps
time instances while preserving their order, therefore changing the time. A time-changed stochastic
process {f(t)}t≥0 is then defined as f(t) = g(W (t)) where the evolution of f is governed by dW (t)
instead of dt. In other words, the change in f will have variance proportional to W (t) − W (s),
instead of t− s where t > s. Assuming that g(t) is Gaussian, this operation enables large deviations
from Gaussian behaviour to occur when dW (t) is large, while retaining a conditionally Gaussian
form.

The random evolution of W (t) can be modelled as a subordinator that take values in [0,∞) such
that it has independent and stationary increments with no fixed discontinuities [20, 21]. Thus, a
subordinator increases non-linearly with a certain statistical distribution defined by the random
number of discontinuities and their random magnitudes. A Lévy process W (t) in [0,∞) hav-
ing no drift or Brownian motion is defined through its characteristic function E [exp(iuW (t))] =

exp
(
t
[∫

(0,∞)
(eiuw − 1)Q(dw)

])
([22], Corollary 15.8) where Q is a Lévy measure that satisfies∫

(0,∞)
(1 ∧ x)Q(dx) < ∞ ([21], p.72). The Lévy measure Q is defined on the random magnitudes

of discontinuities, called jumps, and denotes the expected number of jumps per unit time whose
magnitudes belong to some subset of the jump space [23].

By the Lévy-Itô decomposition, a pure jump Lévy process (i.e. containing no Brownian motion) may
be expressed using a stochastic integral as

W (t) =

∫
(0,∞)

wN([0, t], dw) (1)
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where N is a bivariate point process having mean measure Leb×Q on [0, T ]× (0,∞) which can be
conveniently expressed using a Poisson random measure as

N =

∞∑
i=1

δVi,Mi
(2)

where {Vi ∈ [0, T ]} are i.i.d. uniform random variables which give the times of arrival of jumps,
{Mi} are the sizes of the jumps and δVi,Mi

is Dirac measure centered at time Vi and jump size Mi.
Substituting N into Eq. (1) leads to a representation of a Lévy jump process as an infinite series

W (t) =

∞∑
i=1

MiIVi≤t a.s. (3)

The almost sure convergence of this series to {W (t)} is proved in [24]. Therefore, by sampling pairs
of jump times and sizes {Vi,Mi}, a realisation of a Lévy process W (t) may be obtained.

The standard formulation of the time-change operation on [0,∞) can be extended to d-dimensional
input spaces X by considering the Poisson random measure representation N of a Lévy process.
A homogeneous Poisson process expressing the jump times can be generalised to any number of
dimensions where we define arbitrary inputs x′, x ∈ Rd [25]. The independence properties of a Lévy
measure allow the definition on the unit time interval to be extended to unit d-dimensional volumes
by appropriately scaling the rate of the process [26]. For multidimensional input transformations
a subordination field on Rd is a d-dimensional stochastic process such that each of its dimensions
is a subordinator. Thus the i-th dimension of an input vector x(i) is mapped to W (i)(x(i)) where
W (i) denotes the subordinator on i. Therefore a distance d(x′, x) can be randomly transformed as
d(W (x′),W (x)). Hence, the choice of a Lévy measure characterise the distribution of the random
distances over the input space. The notation introduced for the multidimensional treatment of
subordination is omitted for brevity in the following sections as it is straightforward to extend the
model into multidimensional input spaces.

A non-Gaussian process (NGP) prior on functions can be obtained by randomly transforming the
inputs using a subordinator and carrying out GP regression on the transformed input space. The
resulting posterior distribution follows a non-Gaussian stochastic process. Given a set of input-
output pairs {xi, yi} consider a latent input transformation such that xi is mapped to W (xi) where
{W (x);x ∈ X} is a subordinator. The associated prior on the transformation function is then
defined as p(W ) and the conditional prior over f is p(f |W ) ∼ GP(mW (x),KW (x′, x)) where
mW (x) = m(W (x)), KW (x′, x) = K(W (x′),W (x)) = K(|W (x′) − W (x)|) and K(·, ·) is a
stationary kernel function e.g. squared exponential or Matérn. The joint distribution over the product
space of f and W , p(f,W |y1:n) characterises the NGP prior.

The conditional GP structure of a NGP induces a posterior mean m̄W (·) and kernel function K̄W (·, ·)
that can be evaluated analytically, i.e. p(f |y1:n,W ) ∼ GP(m̄W , K̄W ). The conditional likelihood
p(y1:n|W ) is of particular interest in this framework since it is a measure of how well the data is
represented by the model given a random transformation and it can also be evaluated analytically.

The NGP posterior distribution over the function space is found as

p(f |y1:n) =
∫

p(f |y1:n,W )p(W |y1:n)dW

where p(W |y1:n) is the posterior distribution of the subordinator process. Inferring p(W |y1:n) and
hence p(f |y1:n) is analytically intractable, however using approximate inference methods allow for
straightforward extensions of the model and fully Bayesian inference.

Our work relies on shot-noise simulation methods for simulating Lévy processes based on series
representations [24] and we describe a novel Metropolis-Hastings-within-Gibbs (MH-in-Gibbs)
algorithm [27, 28] to obtain samples from the posterior distribution of a subordinator and estimate a
non-Gaussian process posterior p(f |y1:n) in the appendix.
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3 Experimental Results and Discussion

Figure 1: Regression analysis results for NGP and GP models with for the diamond price data set
using a TS subordinator. The posterior means are plotted as a surface and the ±3 standard deviation
surface is overlaid on the mean as a wireframe plot. The right hand column shows the posterior
subordinator samples for a TS subordinator.

In Fig. 1 we present the results of applying NGP regression to a non-Gaussian two dimensional
data set available in TensorFlow [29] on diamond prices and compare the results with an alternative
standard GP regression setting. The features used in this task are the carat of a diamond which is
a measure of its weight and the percentage length of its table which is the largest flat facet of the
diamond and affects how the diamond interacts with light. For ease of visualisation, both input
dimensions are linearly transformed to lie between [0, 1]. The experiment is designed such that a
1000 randomly selected input-output pairs are chosen as the training set and the learned posterior
surface is compared against another randomly selected 1000 pairs.

The main distinguishing property of the diamond price data set is that the price increases non-
linearly with increases in the carat feature. The GP surface shown here forms a smooth function that
cannot model the rapid change in prices around these regions of non-linear increase. Furthermore, the
predictive surface is making non-zero predictions around out-of-sample regions which are undesirable
in downstream decision-making tasks such as in Bayesian optimisation problems. Alternatively,
the NGP surface is able to identify the non-linear increase in prices and the increased uncertainty
in prices for larger carat values. These properties can be most clearly identified in the posterior
subordinator samples. Note that the mean log conditional likelihood of the MCMC samples are found
as −97873.9 and the GP log likelihood is found to be −113731.8.

NGP regression with a tempered stable subordinator presented in this work may be applied to datasets
where there are local deviations from Gaussian behaviour but the overall trend of the function
closely follows a GP. Using alternative characterisations of the subordinator, varying degrees of
non-Gaussian behaviour can be modelled in a NGP regression framework. Using NGP regression
produces a generative model conditioned on a dataset where samples from both the posterior density
over the input transformation and the predictive density over the observations can be generated.
A probabilistic representation of a latent layer between the input and output spaces may lead to
new insights about the underlying data generating mechanism. Furthermore, our construction of a
NGP using the time-change operation may potentially be extended to any probabilistic setting for
interpreting non-Gaussian behaviour. For example, Lévy fields can be used to model the first layer of
a deep GP architecture ([15, 16]).
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A Sampling and Inference

In this section, we review shot-noise simulation methods for simulating Lévy processes based on
series representations [24]. We describe a novel Metropolis-Hastings-within-Gibbs (MH-in-Gibbs)
algorithm [27, 28] to obtain samples from the posterior distribution of a subordinator and estimate a
non-Gaussian process posterior p(f |y1:n).

A.1 Shot-noise simulation methods

The jump magnitudes {Mi}∞i=1 shown in Eq. (3) of a Lévy process cannot be directly simulated
because there may be an infinite number of jumps in any finite interval. One way to obtain approximate
samples from such an infinite sequence is to consider ordering the jump magnitudes by size and
simulating large jumps while ignoring or approximating the residual error as discussed in [30, 24, 31,
26, 32]. Once the ordered jump sizes have been obtained, the corresponding jump positions {Vi}∞i=1
may be simulated independently from a uniform distribution on (xlb, xub) where xlb, xub are some
lower and upper bounds, or sequentially in space from a homogeneous Poisson process if preferred.

Consider a bivariate point process N ′ that has the same form as Eq. (2) where the jump magnitudes
Mi are expressed as the output of a function h(Γi) where {Γi}∞i=1 are the epochs of a unit rate
Poisson process, i.e. the cumulative sum of exponential random variables with unit rate, independent
of {Vi}∞i=1. Similar to the standard inverse CDF method for random variate generation, the upper
tail mass of a Lévy measure Q+(x) = Q([x,∞)) can be inverted to produce jump magnitudes
of a subordinator by passing epochs of a homogeneous Poisson process through the inverse Lévy
measure Q+−1

(·). The corresponding function h(·) = Q+−1
(·) is non-increasing thus {h(Γi)}

is an ordered sequence representing random jump sizes. Note that the epochs of a homogeneous
Poisson process are analogous to uniformly distributed random variables in (0,∞) and the mapping
theorem states that the resulting points {Vi, h(Γi)} form a Poisson point process N ′ =

∑∞
i=1 δVi,h(Γi)

on (xlb, xub) × (0,∞) [25]. N ′ converges almost surely to N as the {Γi} sequence is simulated
indefinitely [24] and approximations of the point process may be obtained through finite samples.

The explicit evaluation of the inverse tail measure Q+−1
(·) in general is not possible. The Lévy

measures considered in this paper possess a density function denoted as Q(x) such that Q(dx) =
Q(x)dx. The approach taken in this work is to simulate from a tractable dominating point process
N0 having Lévy measure Q0 such that Q0(dx)/Q(dx) ≥ 1, ∀x ∈ (0,∞) for which h(·) can be
explicitly evaluated. The resulting jump magnitudes belonging to N0 are then thinned with probability
Q(x)/Q0(x) as in [33] to obtain the desired approximate jump magnitudes {Mi} of a subordinator.

As a motivating example in this paper, we consider tempered stable (TS) processes which are
commonly used in mathematical finance to model stochastic volatility [34]. We note that our
methodology is equally applicable to other subordinator processes for which shot noise simulation
methods can be applied [32, 35]. A TS process exhibits both α-stable and Gaussian trends depending
on the distance it travels. For short distances the stable characteristics prevail and the TS process
produces larger jumps compared to a Gaussian process. For longer distances the tempering causes a
TS process to produce Gaussian trends [36]. Thus, a TS process is a natural extension to Gaussian
processes.

The Lévy density for the subordinator TS process is defined as [37, 36]

Q(x) = Cx−1−αe−βx, x > 0 (4)

where α ∈ (0, 1) is the tail parameter and β is the tempering parameter. The corresponding tail
probability may be calculated in terms of gamma functions but it cannot be analytically inverted
and numerical approximations are needed [38]. Instead, we adopt a thinning approach where the
Lévy density is factorised into a α-stable subordinator process with Lévy density Q0(x) = Cx−1−α

[39, 35] and a tempering function e−βx. The tail mass of a stable process can be found to be
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Q+
0 (x) =

C
αx

−α and inverting this function produces the simulation function h(γ) =
(
αγ
C

)−1/α
.

Given points xi from a stable point process with density Q0(x), individually selecting (thinning)
points with probability e−βxi results in a tempered stable process. The associated sampling algorithm
is shown in Alg. 1 for reference.

Algorithm 1 Generation of the jumps of a tempered stable process with Lévy density QTS(x) =
Cx−1−αe−βx where α is the tail parameter and β is the tempering parameter.

1. Assign NTS = ∅,
2. Generate the epochs of a unit rate Poisson process, {Γi; i = 1, 2, 3...},
3. For i = 1, 2, 3...,

• Compute xi =
(
αΓi

C

)−1/α
,

• With probability e−βxi , accept xi and assign NTS = NTS ∪ xi.

Algorithm 1 generates the jumps that correspond to a TS process in (0, 1). Since the jumps of a Lévy
process are independent and stationary it is straightforward to adjust the interval. For instance, setting
the rate of the underlying Poisson process produced in the second stage of Alg. 1 to the length of the
interval (xlb, xub) produces the associated TS process. Similarly, for d-dimensional input spaces the
jumps on a n-dimensional hypercube can be simulated by setting the rate to the associated volume
[26].

A.2 Approximate inference

Since a stochastic process is defined as an infinite collection of random variables, designing direct
sampling methods from the posterior p(W |y1:n) based on batch Monte Carlo methods is a difficult
task. Instead a more appropriate approach to high dimensional problems is to use a Gibbs sampler
which approximates samples from a multivariate probability distribution or in this case a stochastic
process. The latent random variables are grouped into smaller and more manageable collections,
then each collection is iteratively updated conditioned on the previous samples and observations.
The sequence of samples from such an algorithm can be considered as a Markov chain where the
stationary distribution is the high dimensional posterior distribution that was targeted. For a short
tutorial on Gibbs sampling see [40].

A Gibbs sampler approximating samples from p(W |y1:n) can be implemented by simulating the
associated bivariate random points that define the jump size and position on small disjoint intervals
τ = (xj , xl) conditioned on the previous sample points in −τ = X \ (xj , xl) and observations.
Progressively simulating these points such that the whole input space is covered leads to approximate
samples from the target distribution. Let {V (k)

i ,M
(k)
i } be a random length sequence of jump positions

and magnitudes associated with the k-th sample W (k) in a Monte Carlo procedure. For any interval
(xj , xl) new jump position and magnitudes {V (′)

i ,M
(′)
i } can be simulated with a rate determined

by the distance |xj − xl| while removing the points associated with the same interval from W (k).
The resulting sample path is denoted as W (′) before accepting or rejecting it as the k + 1-th sample
W (k+1).

Algorithm 2 Simulating sample paths from the proposal density p(Wτ |W−τ ).

Given a random length set NW = {V (k)
i ,M

(k)
i } and an interval (xj , xl) ∈ X ,

1. Simulate {V (′)
i ,M

(′)
i } with rate |xj − xl| using Algorithm 1,

2. Remove all points {V (k)
i ,M

(k)
i } from NW such that xj < V

(k)
i < xl and add {V (′)

i ,M
(′)
i },

NW = NW ∪ {V (′)
i ,M

(′)
i },

3. Substitute the points of NW into Eq. (3) to obtain the proposed sample path W (′).

While Gibbs sampling reduces the complexity of sampling a stochastic process for each small interval,
direct sampling from the conditional posterior for each interval is still intractable in general. Thus
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for each interval a Metropolis-Hastings algorithm is used yielding a MH-within-Gibbs sampling
algorithm [28]. The proposal density for the MCMC sampling procedure is p(Wτ |W−τ ) which
produces new bivariate points (jump sizes and times) on some interval τ conditioned on all points in
−τ as described in Alg. 2.

For each realisation of the subordinator W (k), the conditional likelihood p(y1:n|W (k)) may be used
as a weight in a Markov chain Monte Carlo sampler since it is proportional to the posterior distribution
p(W |y1:n) and we are proposing from p(Wτ |W−τ ). The conditional likelihood p(y1:n|W (k)) may
be analytically found given the values of W (k). Then given a sample W (k) and proposal W (′), the
acceptance probability for the proposal is

α(W (′),W (k)) = min
(
1,

p(y1:n|W (′))

p(y1:n|W (k))

)
(5)

Algorithm 3 MH-within-Gibbs sampler for p(W |y1:n).

1. Initialise W (0) by simulating {Vi,Mi} from the associated bivariate point process using
Alg. 1,

2. Analytically evaluate m̄W (0) , K̄W (0) which define the conditional GP posterior
p(f |y1:n,W (0)), and the conditional likelihood p(y1:n|W (0)),

3. For N times, iterate over τj ∈ X where
J⋃

j=1

τj = X ,

(a) Using τj and the points {V (k)
i ,M

(k)
i } associated with W (k), sample a proposed sample

path W (′) using Alg. 2,
(b) Evaluate m̄W (′) , K̄W (′) and p(y1:n|W (′)),
(c) With probability α(W (′),W (k)) the proposal is accepted and W (k+1) = W (′), other-

wise reject and set W (k+1) = W (k).

The MH-within-Gibbs sampling procedure is described in Alg. 3. The resulting samples {W (k)} are
individually associated with conditional GP posterior functions p(f |y1:n,W (k)) that are completely
defined through their mean m̄W (k) and covariance K̄W (k) functions. Such a collection forms a
Gaussian mixture distribution and the mean and covariance of the corresponding mixture density can
be obtained as

Ef |y[f ] =
1

N

N∑
k=1

m̄W (k) = mf |y (6)

and

Covf |y(f) =
1

N

N∑
k=1

[
K̄W (k) + (m̄W (k) −mf |y)(m̄W (k) −mf |y)

T
]

(7)

where N is the number of samples and Ef |y[f ], Covf |y(f) define the posterior mean and covariance
of the random function f . It is straightforward to obtain the corresponding predictive density
p(y∗|y1:N ) by adding the observation noise matrix Ω to each covariance matrix sample K̄W (k) .
Using a constant noise matrix Ω corresponds to the assumption that the observation likelihood model
is Gaussian [41]. This assumption can be relaxed by sampling a noise matrix Ω(k) for each individual
sample to consider non-Gaussian likelihood models such as scale mixture of normals which includes
the Student-t and Laplace distributions [42]. This results in doubly non-Gaussian behaviour which is
highly expressive while retaining interpretation of individual components of the behaviour.

Following a similar approach the hyperparameters C, α and β of the subordinator process may be
included in the sampling procedure by considering an appropriate prior distribution over their values.
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Hence these parameters may be marginalised out using the Monte Carlo procedure, which leaves the
same number of kernel parameters that define a standard GP. This approach works successfully and
will be reported in a future publication. Furthermore, a nonparametric kernel may be included in this
framework by considering a prior distribution on stationary kernel functions and sampling a kernel
function for each proposed sample. Some examples of nonparametric kernel design can be found in
[1, 4, 43].

A straightforward extension of Alg. 3 to multidimensional input spaces can be achieved by assuming
that individual subordinator dimensions x(i) are independent a priori. The simulation steps defined by
Alg. 1 and 2 can be independently applied to each dimension and the other steps remain unchanged,
replacing step 3. (b) with the multidimensional GP likelihood.
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