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Abstract

Bayesian optimization (BO) has been widely recognized as a powerful approach for
black-box optimization problems with expensive objective function(s). Gaussian
process (GP), which has been widely used for surrogate modeling in BO, is notori-
ous for its cubic computational complexity grows with the increase of the amount
of evaluated samples. This can lead to a significantly increased computational time
for BO due to its sequential decision-making nature. This paper revisit the simple
and effective subset selection methods to pick up a small group of representative
data from the entire dataset to carry out the training and inference of GP in the
context of BO. Empirical studies demonstrate that subset selection methods not
only promote the performance of the vanilla BO but also significantly reduce the
computational time for up to ≈ 98%.

1 Introduction

The black-box optimization problem considered in this paper is defined as:

minimize
x∈Ω

f(x), (1)

where x = (x1, · · · , xn)
⊤ is a decision vector (variable), and Ω = [xL

i , x
U
i ]

n
i=1 ⊂ Rn is the search

space. f : Ω→ R is the corresponding attainable set in the objective space. Bayesian optimization
(BO) has been widely recognized as a powerful approach for such problem Shahriari et al. [2016].
Given its ability to estimate the uncertainty w.r.t. a prediction, Gaussian process (GP) Rasmussen and
Williams [2006] is one of the most popular choices for surrogate modeling in BO. A main limitation
of a GP model is its O(N3) computational complexity for inverting the training data covariance
matrix, where N is the number of training instances. Given the sequential decision-making nature of
BO, the computational limit of a GP model can make BO become gradually computationally stuck
or even intractable with the increase of evaluated samples. However, since the cost of surrogate
modeling is assumed to be negligible compared against that of the objective function evaluation, the
computationally demanding issue of the GP model is largely ignored in the context of BO. Whereas
there have been a wealth of studies for mitigating the computational bottleneck of GP modeling itself
alone. For example, Lawrence et al. [2002], Seeger [2003], Keerthi and Chu [2005] proposed to
select a subset of data to approximate the exact GP by differential entropy, information gain, and
matching pursuit, respectively. The theoretical error bounds of such strategy has recently analyzed
in Hayashi et al. [2020]. An alternative strategy is sparse GP approximation to accelerate the training
and inference of a GP model (e.g., Williams and Seeger [2000], Candela and Rasmussen [2005],
Snelson and Ghahramani [2005, 2007], Titsias [2009]). Its basic idea is to use a small set of M ≪ N
support points, a.k.a. inducing points, as a representation of the complete dataset to constitute a sparse
GP. By doing so, the time complexity is reduced to O(NM2 +M3). Another type of methods are
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developed to exploit the structural characteristics of the covariance matrix to implement an accurate
and scalable inference (e.g., Cunningham et al. [2008]). However, since such methods are built upon
a lattice structure of the training data, they are not directly applicable to the context of BO.

In this paper, we plan to revisit the computational limitation of a GP model in the context of BO. This
paper studies three simple subset selection strategies to pick up some representative data from all the
previously evaluated samples thus to progressively constitute a subset of training data. Our empirical
study shows that the BO can be accelerated for up to 96% by using subset selection strategies. In the
meanwhile, it is interesting to see that the performance of BO have been promoted in many cases
by using a subset of representative data for the training and inference of a GP model. In addition,
comparing to other two selected sparse GP approaches, the performance of subset selection methods
is significantly better with a reduced variance.

2 Subset Selection Methods

In this paper, we empirically investigate three subset selection strategies to pick up a subset of data
(denoted as T ) from the set of all the evaluated samples (denoted as D) during the BO to serve the
purpose of GP model training in the BO. Note that |T | ≪ |D|. We briefly outline the basic ideas
of these three strategies and their algorithmic implementations are delineated in Section 2 of the
supplementary document of this paper.

• Random selection (RS): It simply picks up |T | data instances from D to constitute T .
• k-means clustering selection (KCS): Its basic idea is to first use the k-means clustering Jain

et al. [1999] procedure to divide D into k clusters. Then, the most representative data is
selected from each cluster to constitute the truncated training dataset T ⊂ D.

• Seed clustering selection (SCS): Different from the k-means clustering, this strategy uses
an experimental design method, the Latin hypercube sampling in particular, to seed k initial
pivots in Ω. Clusters are generated according to the distance of the data in D w.r.t. each of
the pivots. Then, the most representative data from each cluster are picked up to constitute
T as done in KCS.

Remark 1 It is anticipated that the amount of the representative data grows with the increase of |D|.
Instead of using a constant k, it makes more sense to dynamically increase k with the progression
of the BO. In this paper, we set k = NFE

α where NFE is the current number of function evaluations
(FEs) and α > 0 is a scaling factor.

Remark 2 Note that the subset selection is not always applied at each iteration of the main while
loop. Instead, it is not incurred until the number of FEs approaches 30n. Thereafter, it is re-called
every 5n new FEs. In other words, T is refreshed every given number of FEs.

3 Results and Analysis

In this section, we compare the performance of three BO variants by using the subset selection
strategies proposed in Section B against the vanilla BO and other BO variants with GP approximation
methods including the variational free energy (VFE) Titsias [2009] and the fully independent training
conditional (FITC) Snelson and Ghahramani [2005]. Five synthetic benchmark test problems and
hyperparameter optimization (HPO) problems for support vector machine (SVM) and feed-forward
neural network (NN) are used to constitute our benchmark suite. The performance is evaluated on
both the quality of the final solution and the computational efficiency achieved w.r.t. the vanilla BO.
Each experiment is independently repeated 20 times with different random seeds. To have a statistical
interpretation of the comparison results, we apply the Wilcoxon signed-rank test Wilcoxon [1945] and
the Cliff’s Delta effect size Hess and Kromrey [2004] as the statistical measures in our experiments.
Our experimental setup is given in Section 3 of the supplementary document of this paper.

3.1 Results on Synthetic Problems

From the results shown in Table 1, it is clear to see that the three subset selection strategies are
the best in most comparisons. In particular, it is surprising to note that even the RS achieves a
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Table 1: Performance comparisons of the quality of solutions obtained by different algorithms.
BO RS SCS KCS VFE FITC

A4 2.120E+0(9.886-1)† 9.247E-1(3.569E-1) 7.778E-1(3.708E-1) 7.979E-1(3.849E-1) 2.161E+0(7.551E-1)† 2.170E+0(5.489E-1)†

A6 3.353E+0(1.379E+0)† 1.204E+0(3.697E-1) 2.208E+0(7.028E-1)† 2.073E+0(6.300E-1)† 2.505E+0(5.605E-1)† 2.754E+0(7.134E-1)†

A10 3.592E+0(5.894E-1)† 5.133E+0(8.983E-1) † 4.433E+0(1.070E+0)† 3.647E+0(9.356E-1)† 2.690E+0(6.403E-1) 4.036E+0(1.218E+0)†

S4 1.402E+2(8.681E+1) 1.220E+2(1.288E+2) 7.370E+1(9.263E+1) 1.483E+2(1.595E+2) 2.686E+2(1.277E+2)† 2.812E+2(1.290E+2)†

S6 3.126E+2(8.401E+1) 5.224E+2(1.831E+2)† 2.946E+2(1.611E+2) 2.963E+2(1.947E+2) 5.719E+2(2.127E+2)† 5.719E+2(2.127E+2)†

S10 1.415E+3(1.420E+2)† 1.378E+3(1.704E+2) 1.270E+3(1.518E+2) 1.402E+3(1.521E+2)† 1.631E+3(2.143E+2)† 1.628E+3(2.058E+2)†

L4 1.428E-1(6.130E-2) 1.488E-1(9.569E-2) 1.307E-1(5.305E-2) 1.479E-1(7.692E-2) 1.806E-1(1.206E-1) 1.595E-1(8.024E-1)†

L6 2.316E-1(8.305E-1) 3.014E-01(1.197E-1) † 2.162E-1(4.509E-1) 1.904E-1(6.433E-2) 3.749E-1(2.241E-1)† 2.091E-1(6.895E-2)
L10 3.644E-1(6.999E-2) 5.290E-1(1.546E-1) 4.259E-1(1.217E-1) 4.401E-1(1.435E-1)† 5.372E-1(2.150E-1)† 4.538E-1(1.667E-1)†

R4 1.488E+0(1.079E+0) 2.247E+0(9.262E-1) 1.857E+0(1.186E+0) 2.778E+0(2.332E+0) 3.723E+0(3.037E+0)† 3.277E+0(2.480E+0)†

R6 3.603E+0(1.711E+0) 3.761E+0(1.447E+0) 6.581E+0(4.760E+0)† 6.549E+0(5.327E+0)† 8.329E+0(6.088E+0)† 7.449E+0(4.856E+0)†

R10 3.191E+1(9.736E+0) † 8.176E+0(2.276E+0) 4.023E+1(9.302E+0)† 3.407E+1(8.197E+0) † 4.584E+1(1.437E+1)† 3.769E+1(9.216E+0) †

G4 3.670E-1(3.655E-1)† 3.072E-2(2.306E-2) 2.799E-1(2.530E-1)† 2.879E-1(2.702E-1)† 2.952E-2(3.022E-2) 3.687E-1(3.660E-1)†

G6 4.190E-1(4.079E-1)† 4.455E-2(2.214E-2) 3.533E-1(2.914E-1)† 3.493E-1(2.773E-1) † 3.420E-1(4.304E-1)† 4.190E-1(4.079E-1)†

G10 5.554E-1(2.186E+0)† 5.408E-1(9.343E-2) † 1.282E-1(4.104E-1) † 9.698E-2(2.946E-1) 5.554E-1(2.186E+0) † 5.399E-1(2.119E+0)†

The labels in the first column are the combination of the first letter of test problem and the number of variables, e.g., A4 is Ackley problem with n = 4.
† indicates that the best algorithm is significantly better than the other one according to the Wilcoxon signed-rank test at a 5% significance level.
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Figure 1: Plots of the convergence trajectories with confidence bounds across the optimization process
obtained by different algorithms.

comparable performance with the KCS and SCS. Moreover, these BO variants with subset selection
strategies are relatively more stable with a smaller variance in most cases. This observation is very
inspiring as it demonstrates that the BO can achieve similar results without using all the data collected
during the optimization process. This can be explained as the data collected at different stages of the
optimization process might only be useful for a specific period of time. In other words, it is more
recommended to strategically leverage the most relevant data to guide the GP model training and the
optimization of the acquisition function.

Figure 1 plots the convergence trajectories with confidence bounds obtained by different algorithms
on some selected problem instances while the full results are given in Section 4 of the supplementary
document. Almost all algorithms are able to converge to the global optimum on the Levy problem
while the convergence trajectory of FITC is clearly slower than the other peer algorithms. As for
the Schwefel and Rastrigin problems, the convergence trajectories of both VFE and FITC are clearly
worse than that of the BO by using our proposed subset selection strategies. For the Griewank
problem, the performance of our proposed methods are relatively stable but they are outperformed by
VFE when n = 4. From these results, we can see that the convergence trajectories BO are accelerated
by using a representative subset of the data collected during the optimization process.

In addition to the quality of solution, we also investigate the potential reduction on the computational
time. To this end, we keep a record of the average CPU wall clock time (in seconds) cost by the vanilla
BO and the other BO variants. From the results shown in Table 2, it is clear to see that the computational
time of BO can be significantly reduced by all peer algorithms. In particular, the percentage of CPU
wall clock time reduction achieved by KCS and SCS are over 96% on all benchmark test problems
while VFE and FITC are not as good and robust as our proposed subset selection strategies. It is also
interesting, even surprising, to see that RS is not as efficient as the other two clustering strategies.

Last but not the least, we investigate three other settings of hyperparameter α = {5, 10, 15}. We
use the Cliff’s Delta effect size to interpret the difference of α = 20 against the others. From the
results shown in Table 3, we can see that there is no comparison classified to be a large difference for
the BO variants with the KCS and SCS. A smaller α means more representative data will be selected
to constitute the truncated training dataset T . That is to say augmenting more data for GP model
training does not lead to a visible improvement to our proposed subset selection strategies. Another
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Table 2: The performance comparison of the average CPU wall clock time (in seconds) with variance
cost by different peer algorithms on each benchmark test problem.

BO RS SCS KCS VFE FITC
CPU time CPU time ROI CPU time ROI CPU time ROI CPU time ROI CPU time ROI

A10 40.72(6.31) 5.19(0.38) 87.25% 1.23(0.15) 96.97% 1.32(0.12) 96.76% 5.11(1.28) 87.45% 4.39(1.06) 89.22%
S10 48.77(12.12) 4.88(0.60) 90.00% 1.48(0.22) 96.96% 1.45(0.15) 97.03% 2.52(1.89) 94.84% 10.99(3.13) 77.47%
L10 123.92(25.94) 4.79(0.24) 96.14% 3.46(0.15) 97.20% 3.39(0.18) 97.27% 21.12(6.49) 82.96% 14.88(4.91) 87.99%
R10 59.30(33.97) 4.01(0.32) 93.24% 1.87(0.07) 96.85% 1.75(0.10) 97.04% 13.50(4.07) 77.23% 12.30(1.53) 79.25%
G10 169.33(26.60) 4.53(0.29) 97.32% 6.11(0.17) 96.39% 6.34(0.17) 96.26% 5.21(1.58) 96.92% 4.39(1.94) 97.41%

ROI measures the percentage of reduction of CPU wall clock time w.r.t. the vanilla BO. Its calculation method is given in Section 3.4 of the supplementary document.

Table 3: Comparison of the Cliff’s Delta effect size w.r.t. different α settings in KCS and SCS.
KCS SCS RS

α = 5 α = 10 α = 15 α = 5 α = 10 α = 15 α = 5 α = 10 α = 15
A10 0.03 0.05 0.04 0.175 0.14 0.085 0.2775 0.365 0.215
S10 0.085 0.2975 0.215 0.05 0.19 0.065 0.18 0.15 0.195
L10 0.24 0.0025 0.065 0.17 0.1775 0.0575 0.24 0.3625 0.1375
R10 0.175 0.09 0.045 0.225 0.005 0.195 0.11 0.025 0.115
G10 0.005 0.0775 0.0025 0.075 0.1575 0.0825 0.36 0.16 0.0525

Table 4: The performance comparison of mean squared error (MSE) and the percentage of reduction
of CPU wall clock time achieved by the BO variants w.r.t. the vanilla BO on HPO problems for SVM
and NN.

BO (SVM) RS (SVM) SC (SVM) KC (SVM) VFE (SVM) FITC (SVM)
MSE MSE ROI MSE ROI MSE ROI MSE ROI MSE ROI

1
6.641E-3 6.641E-3

35.58%
6.641E-3

54.87%
6.641E-3

48.69%
6.831E-3

33.21%
6.641E-3

-74.06%(0) (0) (0) (0) (3.795E-4) (0)

2
1.456E-2 1.456E-2

48.38%
1.456E-2

56.17%
1.456E-2

48.38%
1.456E-2

58.31%
1.456E-2

-86.65%(0) (0) (0) (0) (0) (0)

3
3.478E-2 3.478E-2

11.90%
3.565E-2

32.83%
3.478E-2

28.00%
3.478E-2

24.44%
3.478E-2

-99.43%(0) (0) (1.739E-3) (0) (0) (0)
BO (NN) RS (NN) SC (NN) KC (NN) VFE (NN) FITC (NN)

1
7.590E-3 8.918E-3

80.16%
9.677E-3

86.23%
9.677E-3

83.46%
1.480E-2

84.64%
1.195E-2

78.35%(6.001E-4) (9.676E-4) (1.840E-3) (1.106E-3) (3.823E-3) (4.648E-4)

2
2.816E-2 3.010E-2

83.98%
2.427E-2

83.60%
2.718E-2

86.63%
3.398E-2

83.44%
2.913E-2

90.51%(3.633E-3) (3.633E-3) (5.318E-3) (2.378E-3) (7.520E-3) (3.070E-3)

3
3.043E-2 3.043E-2

94.97%
2.957E-2

91.59%
3.043E-2

88.22%
2.957E-2

95.35%
2.870E-2

95.08%(0) (0) (1.739E-3) (0) (1.739E-3) (2.130E-3)
The dataset indices in this paper are abbreviation of the dataset IDs in the OpenML project, i.e., 1 → #167149, 2 → #167151, 3 → #167153.

interesting observation is that the RS is relatively more susceptible to different α settings, except for
the Rastrigin problem.

3.2 Results on Hyperparameter Optimization Problems

For HPO problems on SVM and NN, we choose three datasets selected from the OpenML project Van-
schoren et al. [2013] in our experiments. The experimental setup of our HPO problems is detailed in
Section 3.2 of the supplementary document. From the comparison results shown in Table 4, we find
that all algorithms achieve the same performance for tuning SVM on all three datasets, but the BO
variants by using our proposed subset selection strategies lead to a significant speedup where they
reduce up to ≈ 57% CPU wall clock time. In contrast, it is surprising to note that the BO variant
using the FITC even cost much more (up to ≈ 100% more) CPU wall clock time comparing to the
vanilla BO when tuning SVM. As for tuning NN, we can still observe a significant speedup (more
than 80%) when comparing the BO variants with the vanilla BO. In addition, the performance of BO
is not compromised or even promoted by using a subset of data for GP modeling and inference as
shown in Table 4 and Figure 3 in the supplementary document.

4 Conclusions

This paper empirically investigate three simple but effective subset selection strategies to pick up a
subset of data from all the evaluated samples during the BO to serve the training and inference of a
GP in BO. Experimental results demonstrate that the proposed subset selection strategies not only
promote the performance of the baseline BO, but also significantly reduce the computational time.
In addition, the performance of our proposed subset selection strategies are robust to the number of
representative data picked up for constituting the training subset.
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A A Gentle Tutorial of Bayesian Optimization

To be self-contained, this section provides a gentle tutorial of Bayesian optimization.

Algorithm 1: Pseudo code of a vanilla BO
Input: Related hyperparameter settings.
Output: The best solution found so far.

1 Sample a set of initial solutions X ← {xi}NI
i=1 from Ω and evaluate their objective function

values Y ← {f(xi)}NI
i=1. Set the training dataset D ← {(xi, f(xi))}NI

i=1;
2 while stopping criteria is not met do
3 Build a GP model based on D;
4 Optimize an acquisition function to obtain a candidate solution x∗;
5 Evaluate the objective function value f(x∗) and update D ← D

⋃
{(x∗, f(x∗))};

6 return argmin
x∈D

f(x)

The pseudo-code of a vanilla BO is given in Algorithm 1. It starts from a space-filling experimental
design (e.g., Latin hypercube sampling) ? to obtain a set of initialized solutions. During the main
while loop from line 2 to line 5, it strategically search the next point of merit in a sequential manner
until the prescribed computational budget is exhausted. In a nutshell, there are two key components
in a BO.

• Surrogate model: This paper considers using a GP model to serve the surrogate modeling

purpose. Given a set of training data D =
{(

xi, f
(
xi
))}N

i=1
, a GP model aims to learn

a latent function g(x) by assuming f
(
xi
)
= g

(
xi
)
+ ϵ where ϵ ∼ N

(
0, σ2

n

)
is an

independently and identically distributed Gaussian noise. For each testing input vector
z∗ ∈ Ω, the mean and variance of the target f (z∗) are predicted as:

g (z∗) = m (z∗) + k∗T (
K + σ2

nI
)−1

(f −m(X))

V [g (z∗)] = k (z∗, z∗)− k∗T (
K + σ2

nI
)−1

k∗
, (2)

where X = (x1, · · · ,xN )T and f = (f(x1), · · · , f(xN ))T . m(X) is the mean vector of
X , k∗ is the covariance vector between X and z∗, and K is the covariance matrix of X .
In this paper, we use the radial basis function as the covariance function to measure the
similarity between a pair of two solutions x and x′ ∈ Ω:

k(x,x′) = γ exp(−∥x− x′∥2

ℓ
), (3)

where ∥ · ∥ is the Euclidean norm and γ and length scale ℓ are two hyperparameters. The
predicted mean g(z∗) is directly used as the prediction of f(z∗), and the predicted variance
V[g(x∗)] quantifies the uncertainty. In practice, the hyperparameters associated with the
mean and covariance functions are learned by maximizing the log marginal likelihood
function as recommended in Rasmussen and Williams [2006]:

log p(f | X) =− 1

2
(f −m(X))⊤

(
K + σ2

nI
)−1

(f −m(X))

− 1

2
log

∣∣K + σ2
nI

∣∣− N

2
log 2π,

(4)

For the sake of simplicity, here we assume that the mean function is a constant 0 and the
inputs are noiseless. The computational bottleneck of training a GP model is the Cholesky
decomposition of

(
K + σ2

nI
)−1

, of which the time complexity is O
(
N3

)
and the space

complexity is O
(
N2

)
.
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• Acquisition function: Instead of optimizing the surrogate objective function, the search
process of BO is driven by an acquisition function which naturally strikes a balance between
exploitation of the predicted minimum and exploration of the model uncertainty. In this
paper, we consider the widely used expected improvement (EI) ? for a proof-of-concept
purpose:

EI(x) = E [max(f(x∗)− f(x), 0]]

= (f(x∗)− g(x))Φ

(
f(x∗)− g(x)

V[g(x)]

)
+ V[g(x)]ϕ

(
f(x∗)− g(x)

V[g(x)]

) , (5)

where x∗ is the current best sample point and ϕ(·) is the probability density function of the
standard normal distribution.

B Proposed Methods

Algorithm 2: Pseudo code of the BO with subset selection
Input: Related hyperparameter settings.
Output: The best solution found so far.

1 D ← ∅, T ← ∅;
2 Sample a set of initial solutions X ← {xi}NI

i=1 from Ω and evaluate their objective function
values Y ← {f(xi)}NI

i=1. Set the training dataset D ← {(xi, f(xi))}NI
i=1 and the truncated

training dataset T ← D;
3 while stopping criteria is not met do
4 if subset selection criterion is met then
5 Use a subset selection strategy to pick a subset T from D;
6 Build a GP model based on T ;
7 Optimize an acquisition function to obtain a candidate solution x∗;
8 Evaluate the objective function value f(x∗) and set D ← D

⋃
{(x∗, f(x∗)),

T ← T
⋃
{(x∗, f(x∗))};

9 return argmin
x∈D

f(x)

As shown in line 5 of Algorithm 1, the training dataset D grows in a sequential manner. Since the
training and inference of a GP model are notoriously time consuming and they grow cubically with
the size of D, we can anticipate that the BO gradually becomes stacked with the increase of D. To
mitigate this issue, this paper proposes three subset selection strategy to pick up a subset of D to train
the GP model. Since the random selection is straightforward, this supplementary document mainly
focus on delineating the other two subset strategies.

B.1 Subset Selection Strategy based on Clustering

The basic idea of the first strategy is to use a clustering procedure to pick up the most representative
data from each cluster to constitute the truncated training dataset T ⊂ D. The working mechanism is
given as follows.

Step 1: Use the k-means algorithm to divide D into k > 1 clusters C = {Ci}ki=1 where |D| =∑k
i=1

∣∣Ci∣∣ and | ∗ | indicates the cardinality of a set.

Step 2: For each cluster Ci, pick up the best data xi∗ = argmin
x∈Ci

f(x) where i ∈ {1, · · · , k}.

Step 3: Set T ← {xi∗}ki=1.

Remark 3 It is anticipated that the amount of the representative data grows with the increase of |D|.
In this case, instead of using a constant k, it makes more sense to dynamically increase k with the
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Figure 2: Illustrative examples of the subset selection strategies based on (a) clustering and (b) space
partitioning.

progression of the BO. In this paper, we set k = NFE

α where NFE is the current number of function
evaluations (FEs) and α > 0 is a scaling factor.

Remark 4 As the illustrative example shown in Figure 2(a), we can see that the four red squares are
the representative data picked up by the subset selection strategy based on clustering.

B.2 Subset Selection Strategy based on Space Partitioning

The basic idea of this strategy is to divide the space into different segments. Then, the most
representative data are picked up from each of these segments to constitute the truncated training
dataset T ⊂ D. The working mechanism is given as follows.

Step 1: Use a Latin hypercube sampling to set k seeds C = {ci}ki=1. For each ci, we initialize a
corresponding set Si ← ∅.

Step 2: For each x ∈ D, identify i = argmin
ci∈C

d(x, ci) where d(∗, ∗) indicates the Euclidean distance,

and set Si ← Si
⋃
{x}.

Step 3: For each Si where i ∈ {1, · · · , k}, identify the best data as xi∗ = argmin
x∈Si

f(x).

Step 4: Set T ← {xi∗}ki=1.

Remark 5 We can envisage that the space is divided into k segments as illustrated in Figure 2(b).
By this means, the best data to each set, as the red square shown in Figure 2(b), can be regarded as a
pivot of each segment.

Remark 6 The BO by using a subset selection strategy is given in Algorithm 2. It follows the same
routine as the vanilla BO shown in Algorithm 1 except the use of a subset selection in lines 4 and 5.

Remark 7 During the GP model training, we use this truncated training dataset T as an alternative
of D to train a GP model. Note that |T | ≪ |D| and both of them will be augmented with the newly
evaluated point of merit.

Remark 8 Note that the subset selection is not always applied at each iteration of the main while
loop. Instead, it is not incurred until the number of FEs approaches 30n. Thereafter, it is re-called
every 5n new FEs. In other words, T is refreshed every given number of FEs.
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C Experimental Settings

This section introduces the experimental setup used to validate the effectiveness of our strategies
proposed in Section B. The source code of different peer algorithms are available in our Github
repository1. They are developed based on the two prevalent GP packages, i.e., GPy ? and GPyOpt ?.

C.1 Benchmark Test Problems

In our experiments, we choose five test problems including Ackley, Levy, Schwefel, Rastrigin and
Griewank constitute our benchmark suite. The number of variables is set as n = {4, 6, 10}. All these
test problems are with many local optima and their detailed mathematical properties can be found
in ?.

C.2 Hyperparameter Optimization Problems

In addition to the synthetic test problems, we also consider the hyperparameter optimization
(HPO) problems for support vector machine (SVM) and feed-forward neural network (NN).
In our experiments, we choose three supervised classification datasets, the ID of which are
{167149, 167151, 167153}, from the OpenML project2 Vanschoren et al. [2013]. In practice, we
follow the protocol of the HPOBench ?, a widely recognized HPO prackage, to implement our HPO
environment. In particular, according to the recommendation in the HPOBench, the hyperparameters
considered in our experiments are listed in Table 5. Each experiment is independently repeated 5
times with different random seeds.

Table 5: A lookup table of the hyperparameters consider in our HPO experiments
SVM

Hyperparameter Type Lower Bound Higher Bound
c float -10.0 10.0

gamma float -10.0 10.0
NN

depth integer 1 3
width integer 16 1024

batch size integer 4 256
alpha float 1.00E-08 1.0

initial learning rate float 1.00E-05 1.0

C.3 Peer Algorithms and Parameter Settings

The effectiveness of our proposed strategies is compared with three peer algorithms including the
vanilla BO, variational free energy (VFE) Titsias [2009] and fully independent training conditional
(FITC) Snelson and Ghahramani [2005]. Note that both of VFE and FITC apply an inducing point
method Candela and Rasmussen [2005] to constitute a sparse GP as an alternative of the exact GP, to
mitigate the exponentially increased training time with the increase of the training data. Interested
readers can refer to their original papers for their detailed working mechanisms. Some algorithmic
parameters of the selected peer algorithms are listed as follows.

• The computational budget is set as 100n function evaluations (FEs) in total while the number
of initial samples is set as 20n. Each experiment is independently repeated 20 times with
different random seeds.

• VFE and FITC: The number of inducing points is set as 5n and the corresponding inducing
variables are initialized by a uniform sampling. The inducing point method is not used until
the number of FEs approaches 30n.

1The source code will be released after the acceptance of this paper.
2https://www.openml.org/
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C.4 Performance Metric and Statistical Test

In addition to compare the quality of the ‘optimal’ solution obtained by different algorithms. We are
mainly interested in the computational efficiency achieved by our proposed strategies against the VFE
and FITC. To this end, we use the rate of improvement (ROI) in terms of the CPU wall clock time
cost by the vanilla BO against the other peer algorithms as the performance metric.

ROI =
tBO − t

tBO
× 100%, (6)

where tBO is the running time of the vanilla BO and t is the running time of a peer method introduced
in Section C.3.

To have a statistical interpretation of the difference of the comparison results, we use the following
statistical measures in our experiments.

• Wilcoxon signed-rank test Wilcoxon [1945]: This is a non-parametric statistical test that
makes little assumption about the underlying distribution of the data. In particular, the
significance level is set to p = 0.05 in our experiments.

• Cliff’s Delta effect size Hess and Kromrey [2004]: This is a non-parametric effect size
measure that quantifies the amount of difference between two groups of stochastic samples.
In practice, the difference is classified to be negligible when the effect size is less than 0.147;
it is classified to be small in case the effect size is with the range of [0.147, 0.33]; and it is
classified to be obvious if effect size is larger than 0.33.

D Full Experimental Results

This section gives the full comparison results of our empirical study.
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Figure 3: Plots of the convergence trajectories with confidence bounds across the optimization process
obtained by different algorithms.
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Figure 4: Plots of the convergence trajectories with confidence bounds across the optimization process
obtained by different algorithms.
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