

## Summary

**Goal** Probabilistic consensus model conditioned on multiple data sources that inform paleoclimate

**Target users** Practitioners from e.g., anthropology and archaeology

- **Data** Mixed gridded and point data:
  - paleoclimate simulations
  - 2. proxy data (from fossilized pollen)

**Model** Spatiotemporal Gaussian process (GP)

**Approximate inference** Doubly sparse GP

- temporal part as state-space model
- 2. **inducing points** in space and time

**Results** Continuous spatiotemporal posterior for European paleoclimate from 21 to 6 ka

## **Approximate inference**

#### **Doubly sparse GPs**

- > Spatially and temporally sparse, variational GP (S<sup>2</sup>CVI) posterior q in markovflow [3]
- S<sup>2</sup>CVI combines inducing point methods with the state-space **representation** of GPs using separate spatial and temporal inducing points.
- Variational objective computational complexity scales as

$$\mathcal{O}((M_t+N)(M_sd)^3$$

We used  $M_s = 100$  spatial inducing points,  $M_t = 6$  temporal inducing points, a state-space dimension d = 1 for  $k_t$ , and a batch size  $N_b = 1000$ .

### Training

- $\blacktriangleright$  Hyperparameters include length scales of  $k_x$  and  $k_t$ , scale of combined kernel, likelihood variance  $\sigma$ , and spatial inducing points.
- Alternate updates of variational parameters using natural gradients and hyperparameters using Adam.
- Trained for 30 epochs (36h on an NVIDIA V100 GPU).

## **Planned Improvements**

- use a parametric mean function for the GP prior
- set informative priors for optimized hyperparameters
- use non-i.i.d. likelihoods for the data
- jointly model MAT and total annual precipitation (multi-output GP)
- incorporate proxy dating uncertainty
- apply the model to other continents

### mlcolab@inf.uni-tuebingen.de



# Spatiotemporal modeling of European paleoclimate using doubly sparse Gaussian processes

Seth Axen, Alexandra Gessner, Christian Sommer, Nils Weitzel, and Álvaro Tejero-Cantero University of Tübingen

# Integrating paleoclimate models and proxies



## Results



#### References

[1] William Wilkinson, Arno Solin, Vincent Adam. Sparse algorithms for Markovian Gaussian processes, AISTATS 2021.

m

- [2] Vincent Adam, Stefanos Eleftheriadis, Nicolas Durrande, Artem Artemev, James Hensman. Doubly sparse variational Gaussian processes, AISTATS 2020.
- [3] Vincent Adam et al. *Markovflow*, commit: fc82c0a.
  - https://github.com/secondmind-labs/markovflow.

#### [1,2]

## EBERHARD KARLS UNIVERSITÄT TÜBINGEN

#### Data about paleoclimate

- **Simulations** outputs of physical models, at unaligned grids in space/time
- **Proxy data** reconstructions from e.g. fossilized pollen

#### Problem

A There is no **consensus model** of grid and point evidence with uncertainty

## Gaussian process spatiotemporal model

**Scope** European mean annual temperature (MAT) between 21ka and 6ka i.e., from the Last Glacial Maximum (LGM) to the mid-Holocene (MH)



 $\bigtriangleup$   $\mathcal{O}(10^6)$  data points is too many to perform exact inference.





#### **amlcolabafediscience.org**



m(x): near-modern reference climate (spatial interpolation) C(x,t): climate variable at coordinates x and time t  $Y_{s,p}$ : simulation or reconstruction at coordinates  $x_s$  and time  $t_p$ 

> pollen ---- simulation

KDE of posterior predictive (PP) error distribution. Error

**i** 98.9% of all data falls within 3 standard deviations of the PP mean

#### Leave-one-time-slice-out cross-validation

#### Validation error

 $E_{\text{val}} = \mathbb{E}_{\overline{C} \sim q}[C(x_s, t_p)] - Y_{s,p}.$ Shown are 80%, 60%, 40%, 20% intervals centered about the median (line). Mean error: 0.05°C Mean absolute error: 0.7°C



Álvaro



arxiv:2211.08160

https://mlcolab.org