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Abstract

We design and evaluate a Thompson sampling-based Bayesian optimization algo-
rithm that leverages a Gaussian process reward model of the Masked Language
Model (MLM) pre-training objective, for its sequential minimization. Transformer-
based language model (TLM) pre-training requires large volumes of data and
high computational resources, while introducing many unresolved design choices,
such as hyperparameter selection of the pre-training procedure. We here fit TLM
pre-training validation losses with a Gaussian process, and formulate a Thompson
sampling bandit policy that maximizes its sequentially attained cumulative rewards.
Instead of MLM pre-training with fixed masking probabilities, the proposed Gaus-
sian process-based Thompson sampling (GP-TS) accelerates and improves MLM
pre-training performance by sequentially selecting masking hyperparameters of the
language model. GP-TS provides a fast and efficient framework for pre-training
TLMs, as it attains better MLM pre-training loss in less epochs, avoiding costly
hyperparameter selection techniques.

1 Introduction

In the field of Natural Language Processing (NLP), models for learning unsupervised representations
from unlabeled text based on Transformer architectures (13) have attained state-of-the-art results on
diverse tasks (3). Transformer-based language models (TLMs), such as BERT (1)) and RoBERTa (5)),
rely on the combination of an unsupervised pre-training of the model, and subsequent task-specific
fine-tuning procedures. Even if conceptually simple and empirically powerful, pre-training is
challenging and expensive: the relationship between the Transformer architecture, the training corpus,
the evaluation metrics and the tunable hyperparameters is multi-modal and complex. Furthermore,
previously overlooked pre-training design choices (such as deciding on the pre-training metric and
optimizing its hyperparameters) result in significant TLM performance differences.

In this work, we improve the pre-training procedure of TLMs by designing a Gaussian process-based
multi-armed bandit (4) framework for sequentially selecting pre-training hyperparameters that result
in optimized performance. We cast the TLM pre-training hyperparameter selection procedure as a
sequential decision process, in which at each interaction, a Thompson sampling-based (11} 12} bandit
agent selects an action (e.g., pre-training hyperparameters) to maximize cumulative rewards (e.g., a
pre-training metric of interest).
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2 Gaussian process-based Thompson sampling for TLM pre-training

We hereby propose a Gaussian process based Thompson sampling (GP-TS) algorithm —with pseudo-
code provided in Algorithm [T}— that views the TLM pre-training procedure as a sequential, black-box
minimization task. We define TLM pre-training steps, i.e., a fixed number of stochastic gradient
updates | as bandit interactions t = 1, - - - , T'; with the goal of minimizing a pre-training objective
I(-|1) given tunable hyperparameters 1. The objective’s dependence with respect to its hyperparame-
ters is complex and unknown, yet empirical evaluations are attainable. We identify hyperparameters
at interaction t, 14, as the bandit’s arms, a; = ¢, and define observed rewards as the self-normalized
difference in pre-training losses between interactions{ﬂ computed in the validation set D,
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In practice, TLM pre-training is carried out based on empirical risk minimization, i.e., only empirical
estimates (1)) of the true objective are available. To accommodate the stochastic nature of these
noisy estimates g; (1) of the black-box loss function {(-|1);) —that we aim to optimize with respect
to its hyperparameters 1)— we model the observed rewards via a surrogate Gaussian process f,

() = f(¥;0) + et 2)
where f(-;6) is a Gaussian process (GP) model, and e; reflects the stochasticity of the observed
empirical rewards. The TLM pre-training use-case in this work is random dynamic masking as
proposed in (5), where the actions (i.e., the bandit arms) are the dynamic masking choices, and the
masked-language model metric, the objective function I(-|1)) the bandit shall optimize.

(D

The proposed GP-TS bandit algorithm operates by sequentially selecting arms (hyperparameters)
a; = 1) and observing rewards r,(¢;) as in Equations (I)) & (Z). Namely, at each bandit interaction
t=1,---,T, we pre-train a TLM for u stochastic updates given selected hyperparameters v, (e.g.,
the number of tokens to mask and their associated random masking probabilities), by minimizing the

MLM loss between a random training set mini-batch Db € D and its masked counterpart Dy,
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where h(lAd; w, 1) denotes the representation of the TLM for the masked token and x(I4), its original
embedding. We explicitly indicate the architecture parameters w € W, the hyperparameters v of the
pre-training procedure, and denote with m;, = {0, 1} the masked tokens 4 in d of the original input
sequence d € Dy. After each pre-training interaction ¢, we evaluate the pre-trained model’s averaged
MILM loss in the validation subset D,,,;,
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and compute the observed bandit rewards () as in Equation (T).

We update (i.e., re-fit) the GP model in Equation (2)) to the history of observed input (action)-output
(rewards) evidence Hi.; = {a1 = ¢¥1,71(¢1), -+ ,ar = ¥y, r¢(¢0e)} after every interaction ¢; for
instance, via Type-II MLE as in Step 12 of Algorithm[I] We draw a posterior sample from the updated
GP reward model (Step 6 of Algorithm [T) that is used by the GP-TS policy to determine (in Step 7 of
Algorithm|[T) the hyperparameters a;41 = 1141 for the next interaction of the pre-training procedure,

.. . . . T
towards maximization of the observed cumulative rewards, i.e., R = thl ri ()

We note that any TLM architecture can be used within the proposed GP-TS framework, as long
as the pre-training hyperparameter space ¢ € U is identified, and rewards as in Equation (I)
can be computed based on a given pre-training objective. The GP reward model in Equation (2)
shall accommodate continuous arms a;, with dimensionality determined by the TLM pre-training
hyperparameter space ¥, and prior mean and kernel functions decided by the practitioner

3Note that u stochastic gradient updates might or might not correspond to a full pre-training epoch.

“By normalizing reward differences per-interaction, we aim at mitigating the potential non-stationary effect
hyperparameters might have on the TLM pre-training procedure.

SWe experiment here with zero-mean and RBF kernel GPs with Gaussian observation noise, as closed-form
posterior inference expressions can be efficiently computed in this case (8, [10).



Algorithm 1 GP-TS for online optimization of TLM pre-training

1: Input: TLM and training corpus

2: Input: Pre-training hyperparameter space ¥

3: Input: Number of bandit pre-training interactions 7', number of updates per-interaction u
4: Input: GP prior functions y(+) and k(-, -), with initial hyperparameters 6,

5: Initialize: A =V, 0; =0, H1 =0

6: fort=1,---,7T do

7:  Draw posterior sample from the posterior GP, i.e., ugt) ~ f(pe(alby), ki(a,a’|0y)) .
8:  Select arm based on drawn posterior sample, i.e., a; = argmax,, ¢ 4 uflt,) .

9:  Run TLM pre-training for u steps, with hyperparameters 1, = a; .
10:  Compute validation loss of pre-trained TLM, i.e., §; as in Equation (@).
11:  Observe bandit reward, i.e., r; as in Equation (T).
12:  Update bandit history H1.; = H1.—1 U {as, 7}
13:  Fit GP model with H1.4, i.e., 0:11 = argmax, logp (r1.¢| f(a1:4),6) .
14: end for

3 Experiments

3.1 Evaluation set-up

We probe the ability of the proposed GP-TS method to —given a dataset, a TLM architecture, and
a computational budget— efficiently pre-train well-performing language models El We implement
the RoBERTa model (5) provided by Fairseq (7) and incorporate it as a module in our proposed
framework, which consists of a Python implementation of GP-TS as in Algorithm[I] with GP modules
in GPyTorch (2) —implementation and configuration details are provided in Appendix [A]

We compare pre-training performance of ROBERTa models based on a grid-search over masking
hyperparameters —as originally executed by (5)— to RoBERTa trained by the proposed GP-TS. We
study two variants of GP-TS, depending on which masking hyperparameters it optimizes: (¢) GP-TS
p, where the bandit arm is the uni-dimensional masking probability p of replacing an input token with
the mask token (we fix other hyperparameters to their default v = 0.1 and A = 0.1 values suggested
in (58)); and (#4) GP-TS ¥ = (p,~,A), where GP-TS optimizes over all the dynamic masking
hyperparameters involved in MLM pre-training, i.e., the bandit search space is a three-dimensional
hypercube ¥ = (0,0.5)2, with no previous expert guidance on hyperparameter selection.

Pre-training datasets. We gather three distinct datasets, two based on publicly available corpora,
and one based on private data from eBay:

» wiki-c4: We pre-process and encode the publicly available Wikitext-103 (6) and Google’s c4
RealNews (14) datasets for pre-training, from scratch, each of the candidate TLMs. This corpora is
similar to those originally used in (1) and (5), yet is publicly accessible for researchers.

* mimic: We pre-process and encode the free-text clinical notes available in the public MIMIC-
III Clinical database (9), which contains deidentified nursing and physician notes, ECG reports,
imaging reports, and discharge summaries for patients who stayed within the intensive care units at
Beth Israel Deaconess Medical Center.

* e-commerce: We pre-process and encode a random subset of eBay marketplace inventories,which
contains different product titles and descriptions provided by marketplace users, as well as category
tags associated with each item, and reviews of the product provided by marketplace users.

Each dataset contains text of very different linguistic characteristics and sizes (see summary statistics
in Appendix[A.2), which we leverage to investigate TLM pre-training across a variety of settings.

We evaluate candidate TLMs both (7) when pre-training from scratch, i.e., from a randomly initialized
architecture; and (i2) with continual pre-training, i.e., when continuing pre-training a TLM archi-
tecture previously trained in other NLP corpora (3)). Continual pre-training results presented here
are for the RoOBERTa-base architecture as pre-trained by Fairseq’} which we continue to pre-train in
domain-specific datasets, i.e., mimic and e-commerce.

8We scrutinize the pre-training procedure of RoOBERTa models under equal experimental conditions and do
not compare performance to state-of-the-art, large-scale TLMs.
7 Available at https://d].fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
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3.2 GP-TS pre-training of RoOBERTa models

We compare from scratch pre-training performance of all RoOBERTa-base models, pre-trained either
with fixed hyperparameters or guided by the proposed GP-TS, in Figure [I} where we illustrate
the averaged MLM validation loss of each RoBERTa model over pre-training interactions. We
observe that GP-TS pre-trains the best performing models, as it provides accelerated and successful
pre-training performance across all studied datasets.
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(a) wiki-c4. (b) mimic. (c) e-commerce.

Figure 1: Averaged MLM validation loss performance comparison (lower is better) of grid-search
based and the GP-TS based from scratch pre-trained RoOBERTa models over interactions.

MLM loss values for GP-TS pre-trained models fluctuate across interactions, depending on the action
(hyperparameter value) selected by GP-TS at each interaction. However, GP-TS pre-trains the best
performing RoBERTa models, the fastest: i.e., it pre-trains models with the lowest MLM in less
interactions. Namely, the benefits of interactive GP-TS pre-training do not only pertain to attained
MLM values, but to an accelerated procedure as well.

Results for continual pre-training performance are provided in Figure 2] below, where we observe
again that the RoBERTa architecture, when pre-trained with GP-TS, achieves the best MLM loss in
fewer epochs across the studied in-domain datasets.
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Figure 2: Averaged MLLM validation loss performance comparison (lower is better) of grid-search
based and the GP-TS based continually pre-trained RoBERTa models over interactions.

t

We note that GP-TS efficiently pre-trains RoOBERTa models —across datasets and pre-training ap-
proaches (from-scratch and continual)— not only when optimizing over p, but even when operating
over the 3-dimensional ¢ hyperparameter search space. We conclude that GP-TS pre-trains better
models than grid-search based alternatives in less interactions, as it is able to find sequences of dy-
namic masking hyperparameters —even when no good guesses for them are available— that minimize
MLM pre-training loss across datasets, when pre-training both from-scratch and continually.

4 Conclusion

We present a Gaussian process-based Thompson sampling (GP-TS) for online TLM pre-training
loss minimization, by modeling noisy evaluations of the pre-training objective function (e.g., the
MLM loss) as drawn from a surrogate Gaussian process. We provide empirical evidence of how
the proposed GP-TS, when applied to MLM dynamic masking optimization, attains superior and
accelerated (both from-scratch and continual) pre-training performance. This pre-training efficiency
is of critical importance in practice, due to the significant resource utilization savings afforded: a
grid-search over hyperparameters can be avoided, as GP-TS is able to sequentially select dynamic
masking hyperparameters that result in fast and performant pre-trained models. Future work consists
on evaluating the downstream performance benefits of TLMs pre-trained via GP-TS: by fine-tuning
GP-TS pre-trained TLM models in downstream tasks, and by leveraging GP-TS to directly maximize
downstream metrics of interest.
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A Appendix: Implementation and experimentation details

A.1 Gaussian process

We implement Gaussian process modules based on GPyTorch (2), and execute all experiments with a

GP process prior and GP fitting details as described in Table I}

Table 1: Gaussian Process prior and hyperparameters.

Hyperparameter Initial Value
GP Model
Mean Function Constant
Prior constant 0
Kernel Function Scaled RBF Kernel
Prior output-scale 1
Prior length-scale 0.25
Observation Model
Likelihood function Gaussian

Noise variance

1

Training details

Loss function

ExactMarginalLogLikelihood

train max iters 100
loss epsilon 0.01
Optimizer
optimizer adam
Ir 0.1

A.2  Summary statistics of the datasets

We split each dataset into 80%-10%-10% training, validation and test sets for our experiments, with

summary statistics of each set provided in Table 2]

Dataset Total word count | Average words per sentence
Training 4,517,625,794 35.9
wiki-c4 Validation 735,950,955 35.6
Test 735,571,833 35.6
Training 402,720,632 216.7
mimic Validation 82,340,235 658.7
Test 18,735,884 187.3
Training 3,935,845,017 5.6
e-commerce | Validation 494,802,278 5.5
Test 482,733,197 5.5

Table 2:

Summary statistics of the datasets used for pre-training.




A.3 RoBERTa pre-training

We pre-train all RoOBERTa models (based on the BERT-base architecture of 125M parameters) by
minimizing the MLM loss with dynamic masking in a server with 8 Tesla V100-SXM2-32GB GPUs.

We execute the RoOBERTa pre-training procedure as described in Fairseq’s RoBERTa pre-training
tutoriaﬂ with specific hyperparameters as described in Table

The interactions for wiki-c4 and e-commerce contain 1000 updates each (i.e., v = 1000), while
we reduce the number of updates per-interaction to v = 500 when pre-training with mimic notes.

Table 3: RoBERTa pre-training hyperparameters.

Hyperparameter Value
Architecture RoBERTa base
Task masked Im
Criterion masked Im
Model details
dropout 0.1
attention-dropout 0.1
weight-decay 0.01
Training details
batch-size 32
update-freq 16
sample-break-mode complete
tokens-per-sample 512
Optimizer
optimizer adam
adam-betas (0.9,0.98)
adam-eps le-6
clip-norm 1.0
Learning rate
Ir 0.0005
Ir-scheduler polynomial decay
linear-warmup-updates 1000
Dynamic masking
mask-prob p
leave-unmasked-prob 0.1
random-token-prob 0.1

8 Available at https://github.com/pytorch/fairseq/blob/main/examples/roberta/README pretraining.md
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