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Abstract

We propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that
capture non-stationary behavior while allowing for online, distributed inference.
Our approach empirically improves performance over state-of-the-art methods for
online GP estimation in the presence of non-stationarity in time-series data. To
demonstrate the utility of our proposed online Gaussian process mixture-of-experts
approach in applied settings, we show that we can successfully implement an
optimization algorithm using online Gaussian process bandits.

1 Introduction

Data are often observed as streaming observations that arrive sequentially across time. To model
streaming data, it is more efficient to update model parameters as new observations arrive than to refit
the model from scratch with the new observations appended onto existing data. Gaussian processes
(GPs) are a convenient distribution on real-valued functions because, when evaluated at a fixed set of
inputs, they have a multivariate normal distribution and hence allow closed-form posterior inference
and prediction when used for regression.

From a statistical perspective, a typical GP regression model infers only stationary functions, meaning
that properties of the function are constant across all input values. While there are covariance kernels
that explicitly capture non-stationary effects in GP regression, they pose greater computational
challenges than a stationary kernel as they often require calculating intractable integrals.

Mixture-of-experts GP models have been used to model non-stationary functions by fitting indepen-
dent GPs to different segments of the input space. In particular, the IS-MOE approach fits mixtures
of GP experts in a distributed manner using importance sampling (Zhang and Williamson, 2019);
however, IS-MOE is not an online algorithm. Conversely, sparse online GPs are a state-of-the-art
method for online GP estimation, but the estimated functions are constrained to be stationary.

We introduce a sequential Monte Carlo (SMC) algorithm to fit infinite mixtures of GPs. SMC samplers
can be adapted to allow real-time updates to the model parameters, and are trivially parallelizable.
We show a connection with online GPs to multi-armed bandits for optimization and demonstrate that
our method can obtain superior performance compared to other GP-bandit optimization techniques.

2 Sequential Gaussian Processes for Online Learning

We assume that our data is generated from a Gaussian process mixture, similar to previous mixture-
of-expert models for Gaussian processes. This hierarchical model allows for greater flexibility in
modeling functions, at the cost of more difficult inference for which we propose a distributable
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solution in the next section. Our approach adopts the following generative model:

xi ∼ T (µzi ,Ψzi , νzi), α ∼ Gamma(a0, b0), zi|α ∼ CRP(α),

(θk, σ
2
k) ∼ logN (m0, s

2
0I),yk|Xk, θk, σ

2
k ∼ N (0,Σθk + σ2

kI),
(1)

where (Xk,yk) = (xi, yi : zi = k) represent the data associated with the mixture k. We assume
that the inputs are distributed according to a Dirichlet process mixture of normal-inverse Wishart
distributions, and we marginalize out the parameter locations from the inputs. The outputs are then
assumed to be generated by independent GPs, given the mixture indicator. The GP parameters,
θk = [θk, σ

2
k], are assumed to be log-normally distributed, and we update the state of θk using

the elliptical slice sampler (Murray et al., 2010). We assign the ith input sequentially to clusters
according to the Chinese restaurant prior and the mixture locations marginalized out:

P (zi = k|α,Xk) ∝
{
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′
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′
k) k ∈ K+.

α · T (µ0,Ψ0, ν0) o.w. (2)

where (µ′k,Ψ
′
k, ν
′
k) are the mean, covariance, and degrees-of-freedom parameters of the multivariate-

t likelihood for observation i’s sequential assignment to mixture k, where K+ refers to the previously
occupied clusters, {k : N ′k > 0}.
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We use the (·)′ notation to indicate that the summary statistics are conditioned only on observations
i′ = 1, . . . , i− 1. We also place a Gamma prior on the DP concentration parameter, α, which allows
us to easily sample its full conditional up to observation i with a variable augmentation scheme
(Escobar and West, 1995):

ρ|α ∼ Beta(α+ 1, i),K = |{k : Nk > 0}|, πα
1− πα

=
a0 +K − 1

N(b0 − log ρ)

α|z1:i, πα, ρ = (1− πα) · Gamma(α0 +K − 1, b0 − log ρ) + πα · Gamma(α0 +K, b0 − log ρ).
(4)

2.1 SMC for Online GP-MOE

In an SMC setting with j = 1, . . . , J particles, we first propagate the particles (z(j),θ(j), α(j)) from
i− 1 to i and fit a GP product-of-experts model. Then we calculate the particle weights. At the initial
time, i = 1, on particle j is:

w
(j)
1 ∝ P (y1|z(j)

1 ,x1,θ
(j))P (x1|z(j)

1 , α(j)). (5)

For i > 1, the particle weight in Equation 6 can be decomposed as the product of:

1. The previous weight, w(j)
i−1,

2. The ratio of the model’s likelihood up to observation i over the likelihood up to observation
i− 1 (Svensson et al., 2015),

3. The particle weight of z(j)
i for the Dirichlet process mixture model (Carvalho et al., 2010).

The GP term of the particle weight from Svensson et al. (2015) in this setting simplifies to the ratio
of the new likelihood (including observation i) and the old likelihood (excluding observation i) of the
mixture zi. We can store the old likelihood in memory from the last time we updated the particle
weights, so the only computationally intensive step is computing the new likelihood for mixture zi.

After calculating the particle weights, we calculate the effective sample size, Neff =

1/
∑J
j=1

(
w

(j)
i

)2

. If the effective number of samples drops below a certain threshold (typically
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J/2), then we resample the particles with probability w(1)
i , . . . , w

(J)
i to avoid the particle degeneracy

problem. The details for updating the particles are in Algorithm 1.

To calculate the predictive posterior distribution of the GP-MOE for test data x∗, we calculate the
predictive mean and variance on each individual particle, averaged over the mixture assignment for the
test data. Then, we average the predictive distribution on each particle, weighted by w(1)

i , . . . , w
(J)
i .

Algorithm 1: Online GP-MOE
Input: New observation, (xi, yi).
/* Particle propagation. */
for j = 1, . . . , J in parallel do

Sample z(j)
i from P (z

(j)
i |α(j),X1:i−1), in Eq. 2

Sample θ(j)
zi using the elliptical slice sampler.

Sample α(j) from the full conditional P (α(j)|z1:i) in Eq. 4.
Update particle weight:

w
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where

(X′k,y
′
k) = (xi′ , yi′ , i

′ : (zi′ = k, i′ < i)), (Xk,yk) = (xi, yi, i : zi = k) (7)

Normalize weights, w(j)
i := w

(j)
i /

∑J
j=1 w

(j)
i .

/* Particle resampling. */
if Neff < J/2 then

Resample particles
(
z

(j∗)
1:i ,θ

(j∗), α(j∗)
)

from j∗ ∼ Multinomial
(
J,w

(1)
i , . . . , w

(J)
i

)
.

Set w(j)
i := 1/J for j = 1, . . . , J .

Output: Particle weights
(
w

(1)
i , . . . , w

(J)
i

)
and particles

(
z

(1:J)
1:t ,θ(1:J), α(1:J)

)
.

3 Empirical Analyses for Online GP-MOE

To demonstrate the ability of our algorithm to fit streaming non-stationary GPs, we apply our online
GP-MOE to a collection of empirical time-series datasets that exhibit non-stationary behavior. In our
comparisons, we look at the following datasets: 1.) An accelerometer measurement of a motorcycle
crash. 2.) The price of Brent crude oil. 3.) The annual water level of the Nile river data. 4.) The
exchange rate between the Euro and the US Dollar. 5.) The annual carbon dioxide output in Canada.

We compare our method against three alternative approaches: a product-of-experts model (POE),
which is a special case of our algorithm with only one particle, a sparse online GP method using the
Woodbury identity and structured kernel interpolation (Stanton et al., 2021, WISKI), and an online
sparse variational GP method (Bui et al., 2017, OSVGP)1.

In these experiments, we set the number of inducing points to be 50 for each of the sparse methods.
We evaluate our method when J is equal to 1 (equivalent to a POE), 100, and 500 particles. Our
choice of kernel for each of these methods is the radial basis function (RBF). The OSVGP method
requires a fixed number of optimization iterations to estimate the variational parameters, and the
results are highly sensitive to this setting. To make the model settings comparable to the GP-MOE
settings, we also set the optimizer iterations to 1, 100, and 500. In the GP-MOE model, we distribute
the inference of each particle over 16 cores. In this setting, we run an online prediction experiment
where we initialize the model using the first observation in the time-series data set. Then, we
sequentially predict the subsequent observation and update the model with the next data point.

1Our code is available at https://github.com/michaelzhang01/GPMOE.
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(a) GP-MOE (b) POE (c) WISKI (d) OSVGP

Figure 1: Online posterior predictive mean (plotted with solid red lines) and 95% credible intervals
(plotted with dashed black lines) for the motorcycle dataset.The color of the data points in these
figures for GP-MOE and POE represent the mixture assignment of that observation for the particle
with the highest weight. N = 94.

Motorcycle Nile Brent Canada EUR-USD
GP-MOE 500 -63.686 (2.370) -144.397 (2.447) 266.563 (45.322) 305.852 (14.763) -4585.758 (20.097)
GP-MOE 100 -72.157 (3.841) -147.531 (4.369) 120.428 (73.548) 261.257 (37.422) -4539.573 (42.731)
POE -114.665 (11.187) -142.832 (1.513) -456.628 (17.927) -114.958 (12.374) -4538.173 (25.029)
WISKI -112.467 (0.000) -127.998 (0.000) -800.852 (0.000) -152.242 (0.000) -4482.185 (0.000)
OSVGP 500 -99.523 (3.019) -127.289 (0.157) -1250.734 (142.780) 43.021 (5.292) -4766.513 (43.271)
OSVGP 100 -125.862 (0.306) -138.537 (0.057) -731.435 (156.499) -230.525 (0.893) -4494.476 (0.244)
OSVGP 1 -135.776 (0.100) -145.048 (0.116) -1438.428 (3.493) -313.022 (0.296) -4676.530 (5.742)

Table 1: Online predictive log likelihood over five trials. One standard error reported in parentheses.

Our method generally performs better than the competing online GP methods. We broadly observe
that the GP-MOE performs better than POE because we can integrate over the space of partitions and,
thus, we will better capture the predictive uncertainty. However, WISKI is undoubtedly the fastest
method as the computational complexity is constant with respect to the number of observations. But
because these data sets exhibit non-stationarity, WISKI is not able to handle changes in the kernel
behavior (like heteroscedasticity, for example) and therefore performs poorly in terms of MSE and
log likelihood in these experiments.

For the motorcycle, Brent, and Canadian carbon dioxide datasets, the GP-MOE performs the best
in terms of predictive mean squared error and log likelihood. In the Nile river data set, the OSVGP
performs the best in terms of online predictive log likelihood. This could be because the only non-
stationary component of the Nile river data set is the mean value, which we assume to be constant at
all values of x in GP-MOE. The OSVGP and WISKI obtain the best MSE and log likelihood results
on the EUR-USD data sets as well, which exhibits only time varying noise, zero mean, and stationary
length-scale for the entire duration of the time-series data. Here, OSVGP and WISKI produce wider
noise estimates than GP-MOE.

4 Conclusion and Future Directions

In this paper, we introduced an online inference algorithm for fitting mixtures of Gaussian processes
that can perform online estimation of non-stationary functions. For future work, we are interested
in applying our online mixture of expert approach for modeling patient vital signs in a hospital
setting. We will to extend our approach to multi-output GP models, and implement kernel functions
customized for health care scenarios. By combining fast inference with flexible modeling, our
approach will have a profound impact in real-time monitoring and decision-making in patient health.

Motorcycle Nile Brent Canada EUR-USD
GP-MOE 500 0.389 (0.007) 0.722 (0.003) 0.049 (0.006) 0.019 (0.002) 1.010 (0.002)
GP-MOE 100 0.417 (0.019) 0.740 (0.005) 0.061 (0.008) 0.018 (0.002) 1.006 (0.002)
POE 0.479 (0.038) 0.807 (0.017) 0.123 (0.007) 0.102 (0.019) 1.016 (0.002)
WISKI 0.631 (0.000) 0.767 (0.000) 0.177 (0.000) 0.048 (0.000) 1.007 (0.000)
OSVGP 500 0.413 (0.028) 0.765 (0.003) 0.922 (0.047) 0.028 (0.001) 1.036 (0.013)
OSVGP 100 0.802 (0.004) 0.852 (0.001) 0.444 (0.050) 0.366 (0.004) 1.003 (0.000)
OSVGP 1 0.986 (0.001) 0.934 (0.001) 0.916 (0.003) 0.929 (0.005) 1.017 (0.002)

Table 2: Online predictive mean squared error over five trials. One standard error reported in
parentheses.
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