
HyperBO+: Pre-training a universal hierarchical
Gaussian process prior for Bayesian optimization

Zhou Fan
Harvard University

zfan@g.harvard.edu

Xinran Han
Harvard University

xinranhan@g.harvard.edu

Zi Wang
Google Research, Brain Team
wangzi@google.com

Abstract

We present HyperBO+: a framework of pre-training a hierarchical Gaussian process
that enables the same prior to work universally for Bayesian optimization on
functions with different domains. We propose a two-step pre-training method and
demonstrate its empirical success on challenging black-box function optimization
problems with varied input dimensions and search spaces.

1 Introduction

While Bayesian optimization (BO) with Gaussian process (GP) priors has been shown to be effective
for expensive black-box function optimization, it is often difficult to hand-specify a good Bayesian
prior [6, 3, 7]. In this work, we propose HyperBO+ that addresses the issue of prior specification
by pre-training a hierarchical GP on collections of function observations partitioned by relevance.
Notably, we only need to pre-train the hierarchical GP once and we can use it universally for BO on
functions with different domains.

Our work is inspired by HyperBO [5], which shows pre-training helps learning a better GP prior and
improving BO performance on the same domain over different functions. Similar ideas [7, 3, 6, 4]
were also proposed for transfer learning and meta learning in Bayesian optimization but they can
only transfer the knowledge for functions with the same domain.

Recently, Chen et al. [1] proposed OptFormer, a transformer based framework of transfer learning
for hyperparameter tuning on universal search spaces, a goal shared by our work. However, due to
its core idea of proposing hyperparameters in an end-to-end fashion, OptFormer must be trained on
millions of BO trajectories, requires giant transformer models, demands expensive TPU hardware
and works only with continuous domains. On the contrary, our model does not have any constrains
on how the data is collected, uses compact GP models with a small number of parameters, trains with
much shorter time on CPUs and works with both continuous and discrete domains.

Our contributions include (1) a new pre-training method for hierarchical GPs on functions with
different domains; (2) HyperBO+, a noval transfer learning BO method that generalizes to universal
search spaces; and (3) showing the empirical success of HyperBO+ on challenging BO tasks.

2 Problem Formulation

Our goal is to optimize unseen black-box functions by pre-training on existing data from functions in
multiple search spaces, which can have different numbers of dimensions for their respective domains.

2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems.



We use the term super-dataset to denote all datapoints collected across multiple search spaces, while
a dataset includes the data from a single search space, and a sub-dataset means the collection of
datapoints from a single function within a search space.

More formally, we define a super-dataset as D = {Di}Ni=1. Each dataset Di consists of observations
on a collection of black-box functions Fi = {fij : Xi → R}Mi

j=1 where functions in Fi share the same

compact search spaceXi ∈ Rdi . Let Di = {Dij}Mi
j=1, where each sub-dataset Dij = {(xij

k , y
ij
k )}Lij

k=1.
Lij is the number of observations on function fij perturbed by i.i.d. additive Gaussian noise, i.e.
yijk ∼ N (fij(x

ij
k ), σ

2
i ). For each i = 1, ..., N , we assume all functions in Fi are i.i.d. function

samples from the same GP: GPi = GP(µi, ki).

Figure 1: Graphical model for a hierarchical
Gaussian process.

θi µi fij

ki

α
yijk

xij
k

σi

Lij

Mi

N

For each function set Fi and its corresponding GPi

with mean function µi : Xi → R and kernel ki : Xi×
Xi → R, we denote the parameters of µi, ki by θi.
Our major assumption is that the GP parameters and
noise variances {(θi, σi)}Ni=1 are i.i.d. samples from
a distribution, as in (θi, σi) ∼ p((θ, σ);α), which is
parameterized by α. The distribution p((θ, σ);α) is a
universal prior for all search spaces. Fig. 1 illustrates
the graphical model of our hierarchical GP.

For simplicity, we use a length-scale based kernel,
e.g. Matern kernel, and assume that each dimen-
sion of the GP parameters and the noise variance are
all independent. We further assume that all length-
scale parameters share the same prior distribution.
Thus, we can estimate the distribution p(·;α) using
the super-dataset and this learned universal prior can be used to guide BO on new black-box functions,
either from seen search spaces or from unseen search spaces.

Evaluation metrics. For an unseen blackbox “testing function” f , we run BO on the function for T
steps and accumulate the observations {xt, yt}. We evaluate the optimization performance of a given
method on an individual testing function using the simple regret rT = maxx∈X f(x)−maxt∈[T ]yt.
We use the mean of simple regret on all testing functions as the overall evaluation metric.
Additionally, we also report the negative log-likelihood (NLL) of the compared models (either a
hierarchical GP or a vanilla GP) on the training and testing datasets. For a vanilla GP parameterized
by (θ, σ), the NLL on a dataset D is defined as NLL(θ, σ) = − log p(D|θ, σ). For a hierarchical GP
parameterized by α, the NLL is defined as follows and is computed via sampling in practice.

NLL(α) = − log p(D|α) = − log

(∫
(θ,σ)

p(D|θ, σ)p((θ, σ);α)d(θ, σ)

)
(1)

≈ − log

(
1

Q

Q∑
q=1

p(D|θq, σq)p((θq, σq);α)

)
(2)

where {(θq, σq)}Qq=1 are i.i.d. samples from p((θ, σ);α).

3 Methodology

The HyperBO+ framework we propose consists of mainly two phases: (1) Training: estimate the
universal prior α from the super-dataset D = {Di}Ni=1 with a two-step approach. (2) Optimization:
running BO with the hierarchical GP parameterized by the learned α on testing functions.

3.1 Two-step training

Estimating GP parameters of each search space. For each function collection Fi with domain Xi,
we can infer its GP parameters θi and noise variance σi by minimizing the negative log-likelihood of
the dataset as in the original HyperBO [5]. Specifically, we use L-BFGS [2] algorithm to minimize

2



the NLL loss function

NLL(θ, σ,Di) = − log p(Di|θ, σ) = −
Mi∑
j=1

log p(Dij |θ, σ) (3)

to get the estimate (θ̂i, σ̂i) = argminθ,σ NLL(θ, σ,Di).

Algorithm 1 HyperBO+ training and optimization
with acquisition function ac(·).

1: function HYPERBO+ (f,D)
2: for Di ∈ D do
3: θ̂i, σ̂i ← TRAIN(Di)
4: end for
5: α̂← MLE({θ̂i, σ̂i}Ni=1)
6: Df ← ∅
7: for t = 1, · · · , T do
8: xt ← argmax

x∈X
act (x; α̂)) (Eq. 4)

9: yt ← OBSERVE(f(xt))
10: Df ← Df ∪ {(xt, yt)}
11: end for
12: return Df

13: end function

Estimate the universal prior. Using the es-
timated {(θ̂i, σ̂i)}Ni=1 from all datasets, we
can use the the maximum likelihood estima-
tor (MLE) for the universal prior parameter α
as α̂ = argmaxα p({(θ̂i, σ̂i)}Ni=1;α). For in-
stance, we can choose the universal prior to be
a normal distribution, i.e.

p({(θ̂i, σ̂i)}Ni=1;α) = N (α0, Iα1)

where α = [α0, α1] ∈ R2, and directly estimate
the mean and variance as the parameter α. For
lengthscales, we treat all estimated lengthscales
as i.i.d. samples from the same distribution.

3.2 Bayesian Optimization

HyperBO+ models functions via a hierarchical
GP with pre-trained universal prior parameter α̂.
At step t of Bayesian optimization when optimizing a testing function f , we compute the acquisition
function for HyperBO+ by first computing the posterior distribution of GP parameters and noise
variance (θ, σ) themselves, then taking the average of acquisition function values according to (θ, σ)-s
sampled from this posterior distribution:

act(x; α̂) =

R∑
r=1

[
act(x; θr, σr)p((xk, yk)

t
k=1|θr, σr)

]
(4)

where (θ1, σ1), . . . , (θR, σR) are i.i.d. samples from the prior distribution p((θ, σ); α̂). By injecting
the term p((xk, yk)

t
k=1|θr, σr) to the acquisition function value of each sample, we convert sampling

from the prior distribution to sampling from the posterior distribution p((θ, σ)|(xk, yk)
t
k=1; α̂) accord-

ing to Bayes’ Rule p((θ, σ)|(xk, yk)
t
k=1; α̂) = p((xk, yk)

t
k=1|θr, σr)p((θr, σr); α̂)/p((xk, yk)

t
k=1).

Here we can ignore the denominator p((xk, yk)
t
k=1) since the BO selection is invariant under any

positive affine transformation of the acquisition function. Note that posterior sampling could be a
preferred option than re-weighting with likelihood. We find our re-weighting strategy to be sufficient
since the samples from the pre-trained prior are often representative of the samples from the posterior.

4 Experiments

We generate a synthetic super-dataset with multiple search spaces following the graphical model in
Fig. 1. The super-dataset includes 20 datasets (search spaces) with 10 sub-datasets in each dataset.
Each sub-dataset includes noisy observations at 300 input locations in its respective search space.
The dimensions of search spaces are between 2 and 5.

Experiment Setups. We consider 3 baselines: (1) A fixed hierarchical GP with a misspecified prior.
(2) Random sampling for optimization. (3) HyperBO [5]. Note that HyperBO is not applicable to
training on some search spaces and testing on others (Setup A).

Setup A: We split the super-dataset into 16 training datasets and 4 testing datasets and report the
aggregated BO performance on test datasets. This setup demonstrate the ability of HyperBO+ to
transfer learned knowledge to unseen search spaces.

Setup B: We split each dataset into into 8 training sub-datasets and 2 testing sub-datasets and report BO
performance on testing sub-datasets from all datasets. Compared with the original HyperBO which
fits GP parameter for each dataset individually, HyperBO+ learns a universal prior for hierarchical
GP from the collection of training sub-datasets from all datasets.

3



0 10 20 30 40 50
BO iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+

(a) Setup A

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+
hyperbo

(b) Setup B

Figure 2: Average simple regret of each method across test sub-datasets during BO with GP-UCB
acquisition function (’fixed’ stands for the fixed misspecified hierarchical GP). The highlighted areas
show the 25th and 75th percentile of simple regret for each method.

Analyses on BO results. The regret curves of compared methods during BO in Setup A are shown
in Fig. 2a. We can see that HyperBO+ outperforms the fixed misspecified hierarchical GP baseline
and the random baseline, demonstrating its capability of learning knowledge about the universal prior
from training datasets and generalizing to new search spaces that are unseen during training.

Fig. 2b shows the regret curves for Setup B. Besides the same trend we have seen in Setup A,
HyperBO+ also outperforms HyperBO, which is rather surprising given that HyperBO specifically
pre-trains a GP that targets a single search space. In contrast, HyperBO+ learns one universal prior
parameterized by α on training sub-datasets from all search spaces and would need to automatically
capture the characteristics of any testing function through posterior inference of GP parameters
based on function observations. One possible reason for this is that HyperBO overfits on the training
sub-datasets which damages its generalization performance on the testing sub-datasets from the same
search space, but further experiments are needed to verify this conjecture.

The results shown here are under one of a couple of groundtruth prior distributions we have tried
to generate the synthetic super-dataset. Results for more prior distributions and more acquisition
function types, as well as discussion on those additional results are included in the appendix.

Evaluations of NLLs. We also evaluated the NLLs of the compared GP-based methods on training
and testing data in both Setup A and B. For both training and testing data, NLLs are computed on
every sub-dataset and the average is reported. In Setup A, the misspecified hierarchical GP gets
the NLLs of 210.78 and 81.64, and HyperBO+ gets 64.23 and −69.20, on training and testing data
respectively. In Setup B, the misspecified hierarchical GP gets the NLLs of 187.54 and 188.27,
HyperBO+ gets 38.17 and 38.63, and the original HyperBO gets 25.40 and 29.47, on training and
testing data respectively.

It can be observed that HyperBO+ achieves much lower NLLs than the misspecified hierarchical GP
on both training and testing data in both setups, which demonstrates the effectiveness of its training.
The original HyperBO gets even lower NLLs than HyperBO+ in Setup B, which makes sense as
HyperBO specifically pre-trains a GP that targets a single search space.

5 Conclusions

In this paper, we propose HyperBO+, a method that learns a universal prior of hierarchical GP
from observations collected on different black-box functions across different search spaces. We
show empirically on synthetic datasets that HyperBO+ outperforms traditional methods and shows
capability of generalizing to new functions from either seen search spaces or unseen search spaces.
It is worth noting that the synthetic dataset is constructed under our modeling assumptions, which
provides an ideal condition for HyperBO+ to learn the desired universal prior. We plan to test the
performance of HyperBO+ on datasets from realistic black-box optimization tasks in future work.

4



Acknowledgments and Disclosure of Funding

We thank Jasper Snoek and Eytan Bakshy for helpful conversations and feedback. Our work also
benefited from Microsoft Azure credits provided by the Harvard Data Science Initiative.

References
[1] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya

Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[2] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45(1):503–528, 1989.

[3] Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cédric Archambeau. Scalable hyper-
parameter transfer learning. In Advances in Neural Information Processing Systems (NeurIPS),
pages 6846–6856, 2018.

[4] Michael Volpp, Lukas P Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter,
and Christian Daniel. Meta-learning acquisition functions for transfer learning in Bayesian
optimization. In International Conference on Learning Representations (ICLR), 2020.

[5] Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zelda Mariet, Zachary Nado, Justin
Gilmer, Jasper Snoek, and Zoubin Ghahramani. Pre-trained Gaussian processes for Bayesian
optimization. arXiv preprint arXiv:2109.08215, 2022.

[6] Zi Wang, Beomjoon Kim, and Leslie Pack Kaelbling. Regret bounds for meta Bayesian optimiza-
tion with an unknown Gaussian process prior. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[7] Martin Wistuba and Josif Grabocka. Few-shot Bayesian optimization with deep kernel surrogates.
In International Conference on Learning Representations (ICLR), 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

5



3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See Ap-
pendix A.1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix A.1.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] In Figure 2, we report the variance of regret-iteration
plots with respect to running BO on different sub-datasets functions from the testing
data and those functions are random samples during the synthetic data generation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix A.1.
(b) Did you mention the license of the assets? [Yes] Our shared code repository includes

license description from the existing codebase we use.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We shared our code repsitory in Appendix A.1.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

A.1 More Details about Experiment Setup

Our code for the experiments is built upon the codebase of HyperBO [5], and is available at https:
//github.com/Evensgn/hyperbo.

The synthetic super-dataset we use includes 20 datasets (search spaces) with 10 sub-datasets in each
dataset. Each sub-dataset includes noisy observations at 300 input locations in its respective search
space. The dimensions of the search spaces are randomly sampled between 2 and 5. The train/test
splits in the two setups are as described in the main body of the paper. As all the datasets are generated
to be i.i.d. samples, we use the first 16 datasets to be training datasets and the remaining 4 datasets to
be testing datasets in Setup A. Similarly, we use the first 8 sub-datasets of each dataset to form the
training data and use the remaining 2 sub-datasets of each dataset to form the testing data in Setup B.

We used the Matern32 kernel and constant meen function for all GPs. Each dataset Di (i ∈
{1, . . . , N}) corresponds to GPi parameterized by θi, which includes the following parameters:
constant (the value of the constant mean function), length-scale (which has the same number of
dimensions as the search space), signal variance. In addition, Di is also parameterized by the noise
variance σi.

For the distribution classes for each of these parameters, we use a Normal distribution for constant and
use a Gamma distribution for each of the remaining parameters. HyperBO+ is given the distribution
classes used for the synthetic dataset generation but not the distribution parameters (µ and σ for
Normal distribution, α and β for Gamma distribution). The specific distribution parameters we use to
generate the synthetic dataset for the experiment section presented in the main body of the paper are as
follows: constant is sampled from Normal(µ = 1, σ = 1), each dimension of length-scale is sampled

6

https://github.com/Evensgn/hyperbo
https://github.com/Evensgn/hyperbo


from Gamma(α = 10, β = 30), signal variance is sampled from Gamma(α = 1, β = 1), and noise
variance is sampled from Gamma(α = 10, β = 100000). Additional distribution parameter values
of synthetic data generation we have tried and additional experiment results are shown below in
Appendix A.2.

For the fixed misspecified hierarchical GP, the specific parameters are as follows: constant is sampled
from Normal(µ = 0, σ = 1), each dimension of length-scale is sampled from Gamma(α = 1, β =
10), signal variance is sampled from Gamma(α = 1, β = 5), and noise variance is sampled from
Gamma(α = 10, β = 100).

We use LBFGS optimizer to fit the GP parameters of every dataset for the training of HyperBO+ and
HyperBO, while the maximum number of iterations is set to 500. For running BO on the testing data,
we use the GP-UCB acquisition function (results with more acquisition function types are shown
in Appendix A.2) and the optimization budget is T = 50 iterations. At each step of BO iteration,
we sample R = 100 pairs of (θ, δ) values to compute the acquisition function values in Equation 4.
When evaluating the NLLs of hierarchical GP-based methods (the misspecified hierarchical GP and
HyperBO+), we sample Q = 500 pairs (θ, δ) values to estimate the NLL as in Equation 1.

One experiment (one synthetic super-dataset, one acquisition function type) under the current setting
takes around 6 hours to finish on a virtual machine with 96 vCPUs.

A.2 Additional Experiment Results

As described above, the experiments results in Section 4 corresponds to a configuration where the
groundtruth prior distribution of the length-scale parameter is Gamma(α = 10, β = 30) and the
acquisition function type for BO is GP-UCB.

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+

(a) Setup A

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+
hyperbo

(b) Setup B

Figure 3: Average simple regret of each method across test sub-datasets during BO with GP-UCB
acquisition function (’fixed’ stands for the fixed misspecified hierarchical GP). The highlighted areas
show the 25th and 75th percentile of simple regret for each method. The groundtruth prior distribution
of the length-scale parameter is Gamma(α = 2, β = 6).

More groundtruth prior for length-scale. As the difficulty of a black-box function optimization
task is particularly sensitive to the length-scale parameter, we also explored a couple of other prior
distribution parameters for length-scale, while keeping the groundtruth prior distribution for other
GP parameters unchanged. Figure 3 shows the results when the groundtruth prior distribution of
the length-scale parameter is Gamma(α = 2, β = 6) and the acquisition function type for BO is
GP-UCB. Figure 4 shows the results when the groundtruth prior distribution of the length-scale
parameter is Gamma(α = 1, β = 5) and the acquisition function type for BO is GP-UCB.

More acquisition function types. In addition, we also run experiments with two other acqui-
sition functions while setting the groundtruth prior distribution of the length-scale parameter as
Gamma(α = 10, β = 30). Figure 5 shows the results when the acquisition function type for BO is
Expected Improvement (EI). Figure 6 shows the results when the acquisition function type for BO is
Probability of Improvement (PI).

7



0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+

(a) Setup A

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+
hyperbo

(b) Setup B

Figure 4: Average simple regret of each method across test sub-datasets during BO with GP-UCB
acquisition function (’fixed’ stands for the fixed misspecified hierarchical GP). The highlighted areas
show the 25th and 75th percentile of simple regret for each method. The groundtruth prior distribution
of the length-scale parameter is Gamma(α = 1, β = 5).

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+

(a) Setup A

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0
av

er
ag

e 
be

st
 sa

m
pl

e 
sim

pl
e 

re
gr

et

fixed
random
hyperbo+
hyperbo

(b) Setup B

Figure 5: Average simple regret of each method across test sub-datasets during BO with EI acquisition
function (’fixed’ stands for the fixed misspecified hierarchical GP). The highlighted areas show the
25th and 75th percentile of simple regret for each method. The groundtruth prior distribution of the
length-scale parameter is Gamma(α = 10, β = 30).

As we can see from these results, the performance of GP-based methods are sometimes no better
than or even worse than the random baseline, this is possible when the length-scale parameter is too
small (the function is too volatile within the domain) or too large (the function is very smooth and
therefore easy for random baseline to optimize). The two additional groundtruth prior distributions
for length-scale shown here has a larger variance compared to Gamma(α = 10, β = 30), the one
used in the main body of the paper, thus are more likely to generate datasets with length-scales that
are too small or too large. The relative ordering of performance among the compared methods can
also change when a different acquisition function is used. But one common observation from the
different configurations is that HyperBO+ outperforms the misspecified hierarchical GP and either
outperforms or achieves similar performance with original HyperBO in all of these configurations.

8



0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

av
er

ag
e 

be
st

 sa
m

pl
e 

sim
pl

e 
re

gr
et

fixed
random
hyperbo+

(a) Setup A

0 10 20 30 40 50
BO iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0
av

er
ag

e 
be

st
 sa

m
pl

e 
sim

pl
e 

re
gr

et
fixed
random
hyperbo+
hyperbo

(b) Setup B

Figure 6: Average simple regret of each method across test sub-datasets during BO with PI acquisition
function (’fixed’ stands for the fixed misspecified hierarchical GP). The highlighted areas show the
25th and 75th percentile of simple regret for each method. The groundtruth prior distribution of the
length-scale parameter is Gamma(α = 10, β = 30).

9


	Introduction
	Problem Formulation
	Methodology
	Two-step training
	Bayesian Optimization

	Experiments
	Conclusions
	Appendix
	More Details about Experiment Setup
	Additional Experiment Results


