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IntroductionIntroduction

• Modeling ocean currents is important for:

– Forecasting oil spill dispersion
– Understanding biological productivity
– Studying energy fluxes

• The statistical framework is complex:
– Observations are drifter traces from floating buoys
– Currents vary spatially and temporally
– The behavior is highly non-linear

• GoalGoal: extrapolate a smooth function (ocean flow) away from drifters
• Researchers have modeled currents through Gaussian processes (GPs)
• Standard approaches in current literature cannot capture some physical properties
of interest, e.g., eddies and continuity of currents

• Our approach combines GPs with the Helmholtz decomposition and overcomes
these issues, with only a small constant multiple of additional computational ex-
pense

Background: Gaussian Processes (GP)Background: Gaussian Processes (GP)
• MotivationMotivation: non-linear regression → GP is a par-
ticular prior over smooth functions

• Formally: a collection of random variables, any fi-
nite number of which have a joint Gaussian distri-
bution

• A GP f (x) is completely characterized by its mean
and kernel function,

m(x) = E[f (x)]
k(x,x′) = Cov(f (x), f (x′))

• Many different kernels =⇒ many different behav-
iors. What is an appropriate kernel choice for our
problem?

• Usual assumption for spatio-temporal problems:
we want smooth variations in space/time → a nat-
ural choice is squared-exponential (SE) kernel

k(xi, xj) = σ2
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• QuestionQuestion: how do we put a prior over ocean cur-
rents?

• Standard solution [1]Standard solution [1] : independent SE GP priors
over velocity components

• IssueIssue: this approach does not capture eddies and continuity of currents – see
figure in experiments’ section

• Is there room for improvement? Yes! Use domain knowledge → Helmholtz de-
composition

Background: Ocean flows + HelmholtzBackground: Ocean flows + Helmholtz

• Ocean flows can be characterized by two quantities:
– Divergence, measures expansion/contraction/translation → characterizes

up/downwelling (particular interest for oceanographers)
– Vorticity, measures rotation → usually large, long timescale

• QuestionQuestion: can we represent this mathematically?

• Helmholtz decompositionHelmholtz decomposition: express
a smooth vector field F : R2 → R2 as a
sum of the gradient of a scalar poten-
tial and the curl of a scalar potential

F︸︷︷︸
oceanflow
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divergence
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where

∇Φ(x) :=
[
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∂Φ(x)/∂x(2)

]
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[
∂Ψ(x)/∂x(2)
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]
• GoalGoal: Estimate Φ and Ψ from data →
extrapolate vector field F.

Our method: GPs @ the Helm(holtz)Our method: GPs @ the Helm(holtz)

• Model drifter traces, (Y(1),Y(2)), as sparse noisy observations of a 2D vector field,
F : R2 → R2, mapping spatial locations, x = (x(1), x(2)), into horizontal and vertical
velocities, (F(1),F(2))

• LikelihoodLikelihood : independently for each observation,[
Y(1)(x)
Y(2)(x)

]
| F ind∼ N

(
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[
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0 σ2

obs

])
with σ2

obs observation noise.
• Helmholtz priorHelmholtz prior: independent SE priors on the two Helmholtz components

Φ ∼ GP(0, KΦ) Ψ ∼ GP(0, KΨ)

• Key toolKey tool : the derivative of a GP is a GP [2]. Therefore, e.g., ∇Φ ∼ GP(0,∇KΦ)
where, for each pair of datapoints x, x′,

∇Kϕ(x,x′) := Cov
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=⇒ we show that with the Helmholtz prior we are still able to make predictions
over the original space of interest!

ExperimentsExperiments

• Real data: 60 buoys floating in the Gulf of Mexico for 5 days, measured hourly
• For simplicity, collapse the time dimension and focus on the spatial inference

• Both approaches learn correct magnitude and direction when close to buoys’ ob-
servations

• While the standard approach fails to capture eddies and continuity of currents, our
approach allows us to do so

• Is there room for improvement? Yes! Our model tends to create/complete vortices
even when not appropriate → potential solution:potential solution: combine the two approaches,
e.g., by summing up the two kernels

Future workFuture work

• Introduce multiple lengthscales in the kernel definition
• Consider time-varying vector fields, i.e., put back time dimension
• Evaluate model on physics simulation (known ground truth)
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