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Introduction Our method: GPs @ the Helm(holtz)

» Model drifter traces, (Y, Y'?)), as sparse noisy observations of a 2D vector field,
F : R? — R?, mapping spatial locations, x = (=", z?), into horizontal and vertical
velocities, (F', F'?)

* Likelihood : independently for each observation,
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* Modeling ocean currents is important for:

— Forecasting oll spill dispersion
— Understanding biological productivity
— Studying energy fluxes
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* The statistical framework is complex:

— Observations are drifter traces from floating buoys
—Currents vary spatially and temporally with o7, . observation noise.
— The behavior is highly non-linear LATITUDE « Helmholtz prior: independent SE priors on the two Helmholtz components

O ~ GP(0, Ky) W ~ GP(0, Ky)

» Goal: extrapolate a smooth function (ocean flow) away from drifters

» Researchers have modeled currents through Gaussian processes (GPs) * Key tool : the derivative of a GP is a GP [2]. Therefore, e.g., V& ~ GP(0, VKy)
. . ,

- Standard approaches in current literature cannot capture some physical properties where, for each pair of datapoints X, X,

of interest, e.g., eddies and continuity of currents 00(x)| [ad(x) K (x,X') 02K (X, X))
» Our approach combines GPs with the Helmholtz decomposition and overcomes VE.(x.X) = Cov o) Or'(1) 02002/ 99z

these issues, with only a small constant multiple of additional computational ex- A oo(x) | [odx)| ) |8 K(x,X') 9K (X,X)
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Background: Gaussian Processes (GP)

* Motivation: non-linear regression — GP Is a par-
ticular prior over smooth functions

—> we show that with the Helmholtz prior we are still able to make predictions
over the original space of interest!

.GP with /=1, o-var=1, obs-noise=0.01

_ . Fprmally: a collec’gon of rand.or.n varlablgs, any f!- Experiments
E nite number of which have a joint Gaussian distri-
g bution * Real data: 60 buoys floating in the Gulf of Mexico for 5 days, measured hourly
O - . . . . . . . . . .
Q A GP f(x) is completely characterized by its mean * For simplicity, collapse the time dimension and focus on the spatial inference
and kernel function,
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* Is there room for improvement? Yes! Use domain knowledge — Helmholtz de- 00 TS ETTANGLE
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Background: Ocean flows + Helmholtz
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» Ocean flows can be characterized by two quantities:
—Divergence, measures expansion/contraction/translation — characterizes

up/downwelling (particular interest for oceanographers) * Both approaches learn correct magnitude and direction when close to buoys’ ob-
— Vorticity, measures rotation — usually large, long timescale servations
» Question: can we represent this mathematically? * While the standard approach fails to capture eddies and continuity of currents, our

approach allows us to do so

» Helmholtz decomposition: express 7S :V"; o * Is there room for improvement? Yes! Our model tends to create/complete vortices
2 smooth vector field F : R? —s R2 as a D Z’; / /\ v ‘\ ;\ L 2 even when not appropriate — potential solution: combine the two approaches,
sum of the gradient of a scalar poten- R R i s 4? e.g., by summing up the two kernels
tial and the curl of a scalar potential | §§§§§ 3‘:51532 L\\ ot
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