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Abstract

Understanding the behavior of ocean currents has important practical applications.
Since we expect current dynamics to be smooth but highly non-linear, Gaussian
processes (GPs) offer an attractive model. In particular, one existing approach is
to consider the velocities of the buoys as sparse observations of a vector field in
two spatial dimensions and one time dimension. But we show that applying a GP,
e.g. with a standard square exponential kernel, directly to this data fails to capture
real-life current structure, such as continuity of currents and the shape of vortices.
By contrast, these physical properties are captured by divergence and curl-free
components of a vector field obtained through a Helmholtz decomposition. So
we propose instead to model these components with a GP directly. We show that,
because this decomposition relates to the original vector field just via mixed partial
derivatives, we can still perform inference given the original data with only a small
constant multiple of additional computational expense. We illustrate our method
on real oceans data.

1 Introduction

Accurately capturing the behavior of ocean currents has the potential to improve ecosystem man-
agement, forecasting of oil spill dispersion, and general understanding of how matter traverses the
ocean. To this end, ocean researchers release GPS-tagged buoys in the ocean – and track the corre-
sponding drifter traces, varying across time and space. We wish to predict currents, i.e., the ocean’s
velocity vector field, away from the observed drifters. A priori, we expect currents to vary smoothly
but in a highly nonlinear fashion. Thus, multi-output Gaussian processes (GPs) with standard spa-
tiotemporal kernels form a natural model class. Indeed, Gonçalves et al. [2019] and Lodise et al.
[2020] take exactly such an approach; they consider the velocities of the buoys as sparse observa-
tions of a vector field describing ocean dynamics in two spatial dimensions and one time dimension.

However, we show that naively applying a multi-output GP with a standard square exponential
kernel directly to drifter trace data fails to capture real-life current structure. See Figure 1a. For
simplicity, we start by assuming that the currents are stationary across time and focus on prediction
across space. Red dots represent observed locations from 60 buoys in the Gulf of Mexico over
4 days (measured hourly). The horizontal and vertical axes represent, respectively, latitude and
longitude. Black arrows represent posterior means of the current. The lower plots zoom in on parts
of the upper plot. Despite evidence of a strong current moving left to right in the blue box, the naive
approach shows an abrupt drop in current away from observed data. Moreover, current behavior
around observations suggests a vortex should be present in the pink box, but the naive approach
shows none. The naive approach captures current behavior only very near the observed drifters.

The aim of this work is to extrapolate the behavior of currents more realistically. To that end, we
propose to incorporate fluid dynamics information directly into our model via a Helmholtz decom-
position [Bhatia et al., 2013, Arfken and Weber, 1999]. In particular, we know that the motion of
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Figure 1: (a) Empirical results using the naive approach. Top: predictive means (black arrows) for
a grid of test points, given training observations (red dots). Bottom: zoom on areas with predicted
abrupt current change (blue) and missing a potential vortex (pink). (b) Empirical results using our
new Helmholtz approach predict more realistic current behavior.

a volume element of a continuous fluid media consists of (i) expansion or contraction in three or-
thogonal directions, (ii) rotation about an instantaneous axis, and (iii) translation. Oceanographers
characterize these movements using two quantities: divergence, measuring expansion/contraction
and translation, and vorticity, measuring rotation. The key new idea in our work relative to the naive
approach is that we model the Helmholtz components as smoothly varying according to standard
spatial GPs, rather than applying standard spatial GPs directly to the current vector-field compo-
nents.

We show that our resulting model is amenable to practical inference. Since (i) the Helmholtz decom-
position is based on partial (mixed) derivatives, and (ii) the derivative of a GP is a GP, we show that
our prior choice implies a GP prior on the current itself. Therefore, we can still perform inference
given the original data with no extra approximation. Moreover, our method increases computational
expense relative to the naive approach only by a (small) constant multiple.

Related work. The Helmholtz decomposition has been used extensively in the oceanographic lit-
erature as a way to interpret and visualize currents’ features when the field is observed on a grid
[Rocha et al., 2016, Zhang et al., 2018, 2019, Han and Huang, 2020, Bühler et al., 2014, Caballero
et al., 2020]. These works decompose the observed vector field in the two Helmholtz components
(curl- and divergence-free, respectively) but do not solve any prediction task. In the GP literature,
it is well known that specific covariance functions can be used to capture curl- and divergence-free
vector fields [Alvarez et al., 2012, Fuselier Jr, 2007, Lowitzsch, 2002]; moreover, a line of research
related to electromagnetism [Wahlström et al., 2013, Wahlström, 2015, Solin et al., 2018] uses curl-
and divergence-free kernels to try to reconstruct the overall magnetization through Maxwell’s equa-
tions, similarly to what we are doing for ocean currents. However, none of the aforementioned
work can be directly applied to our setting, either because the observation model is different, or
because curl- and divergence-free fields are not considered together, as we are doing instead with
the Helmholtz decomposition. Finally, recent work from the deep learning community [Greydanus
and Sosanya, 2022] extended Hamiltonian Neural Networks [Greydanus et al., 2019] to model both
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curl- and divergence-free dynamics simultaneously. Although the prediction problem is similar,
this method relies on having low-resolution data available on a dense grid, which is not available for
ocean drifters. We refer the reader to Appendix A for a more detailed discussion of related literature.

2 Background

Gaussian Processes. We briefly introduce our GP notation before proceeding. We consider a GP
prior on a function f defined on the covariate space R2; the prior is characterized by a mean function
m : R2 → R and a positive definite covariance function k : R2×R2 → R. We write f ∼ GP(m, k).

In spatial problems, analysts often assume smooth variation across space and may choose a squared-
exponential (SE) kernel to capture these assumptions:

k(xm, xm′) = σ2
f · exp

(
− ∥xm − xm′∥22/2

ℓ2

)
+ σ2

nδmm′

where xm, xm′ represent two spatial locations in R2, the signal variance σ2
f determines the variation

of function values from their mean, ℓ controls the lengthscale on which the function varies, σ2
n

captures noise around the trend, and ∥ · ∥ denotes the Euclidean norm.

Gonçalves et al. [2019], Lodise et al. [2020] model the horizontal and vertical velocity components
of current with two independent SE GP priors, but this model fails to capture physical properties of
interest (Figure 1a). We propose that, when modeling ocean currents, it is more natural to put SE GP
priors on meaningful physical components of the ocean flow, rather than the two spatial directions
directly. We describe these components next.

Ocean flows and the Helmholtz decomposition. The motion of a volume element of a continu-
ous fluid media, e.g., the ocean flow, is characterized by two quantities: the divergence, measuring
expansions, contractions, and translations, and the vorticity, measuring rotations around an istan-
taneous axis. Both quantities are relevant for oceanographic studies. Divergence, for example,
characterizes fronts – small structures with spatial scales of O(0.1− 10) km and temporal scales of
O(1− 100)h. These are associated with strong vertical motions comprised of a narrow and intense
downwelling (flow into the ocean from the surface) and broad, diffuse upwelling (flow from depths
to the surface). The strong downwelling regions play a crucial role in air-sea fluxes (including uptake
of gases into the ocean) and for biological productivity, since floating particles in the ocean (that in-
clude plankton and algae) are concentrated at these fronts. On the other hand, rotation characterizes
eddies, larger structures that usually evolve over a long timescale. These account for kinetic energy
in the ocean, which makes them a crucial part of global balances of energy, momentum, heat, salt,
and chemical constituents (such as carbon dioxide).

From a mathematical perspective, one can observe that since the divergence is an irrotational field, its
curl is zero (curl-free), and can thus be represented as the gradient of a scalar potential function, ∇Φ.
On the other hand, since the rotation is an incompressible field, its divergence is zero (divergence-
free), and can thus be represented as the vorticity operator of another scalar potential function,
∇ × Ψ. See Appendix B for more details. The Helmholtz decomposition puts together these two
observations in a formal mathematical theorem.
Theorem 1 (Helmholtz decomposition). A smooth vector field F : R2 → R2 can be expressed as
the sum of the gradient of a scalar potential and the vorticity operator of another scalar potential,

F︸︷︷︸
oceanflow

= ∇Φ︸︷︷︸
divergence

+ ∇×Ψ︸ ︷︷ ︸
vorticity

where

∇Φ(x) :=
[
∂Φ(x)/∂x(1)

∂Φ(x)/∂x(2)

]
∇×Ψ(x) :=

[
∂Ψ(x)/∂x(2)

−∂Ψ(x)/∂x(1)

]
.

We provide some visual intuition about Theorem 1 in Appendix E.

In this work, we aim to estimate Φ and Ψ from observed data – and use the estimated components to
reconstruct the vector field F . Our approach has an additional advantage: since Φ and Ψ are scalar
potentials, they are invariant under changes of coordinate system. As a consequence, when we put
a prior on them, the prior is also invariant under these changes. On the contrary, since the velocity
field is a vector field, this invariance does not hold for the standard approach.
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3 Our method: Gaussian processes at the Helm(holtz)

We consider a dataset of M observations, {xm, ym}Mm=1, where xm = (x
(1)
m , x

(2)
m ) represents the

spatial location of a buoy, and ym = (y(1)m , y(2)
m ) the corresponding horizontal and vertical velocities

(the so-called drifter trace). We treat these y’s as sparse noisy observations of a 2D vector field,
F : R2 → R2, mapping spatial locations into horizontal and vertical velocities, (F(1),F(2)). We
model the drifter traces as follows, with observation noise σ2

obs:[
y(1)m

y(2)m

]
| F(xm)

ind∼ N
(

F(xm),

[
σ2

obs 0
0 σ2

obs

])
independently across m.

By the Helmholtz decomposition theorem, we can rewrite F (xm) = ∇Φ(xm) + ∇ × Ψ(xm), for
each xm. To exploit this decomposition, we put independent GP priors with squared-exponential
kernel on each of the two Helmholtz components:

Φ ∼ GP(0,KΦ) and Ψ ∼ GP(0,KΨ). (1)

A principal contribution of our work is to show that, with this prior choice in the Helmholtz-
transformed space, we are still able to make predictions over the original space of interest. We
further show that our method incurs only a small constant multiple of additional computation.
Proposition 1. Let F be the ocean current vector field and Φ and Ψ the divergence and vorticity
components of an Helmholtz decomposition of the field, respectively. The prior choice in Equa-
tion (1) implies that the prior on the original vector field F is a GP as well, with mean 0 and kernel
∇KΦ +∇KΨ, as in Appendix C.

Intuitively, the result holds since (i) the Helmholtz decomposition is based on partial (mixed) deriva-
tives and (ii) the derivative of a GP is a GP. In particular, in deriving the covariance of the induced
GP on F , we use Equation (9.1) in Rasmussen and Williams [2005]. This transformation induces
a small constant multiple of additional computational expense compared to the direct approach to
drifter trace data because the gradient operators “double” the size of the covariance matrices in-
volved. Roughly speaking, if the standard approach computational cost is N , our Helmholtz ap-
proach cost would be 8 ·N ≃ O(N).

4 Experimental results

We now check the empirical performance of putting GP priors directly on the Helmholtz compo-
nents. We use the GLAD dataset [Özgökmen, 2012]: 297 trajectories from near-surface CODE-type
ocean drifters (drogued at a depth of one meter) tracked in real-time using SPOT GPS units, launched
in the northern Gulf of Mexico near DeSoto Canyon in July 2012 as part of the CARTHE Grand
Lagrangian Deployment (GLAD) experiment.

For ease of analysis, we take drifter traces of 60 of these buoys, observed hourly over a 4-day time
horizon, and we downsample these traces by a factor 12, obtaining 1906 observations. As before,
we collapse the time dimension and focus on the spatial inference. With our method, we have
five hyperparameters to choose: σΦ and ℓΦ for the divergence kernel, σΨ and ℓΨ for the vorticity
kernel, and the observation noise σ2. To optimize these, we perform a two-stage grid search with
marginal log-likelihood as objective. This is inspired by oceanographic prior knowledge: usually the
divergence component is substantially less strong (one or two order of magnitude) than the vorticity,
whereas the respective lengthscales should be more similar. See Appendix D for additional details.

Our results appear in Figure 1b. The black arrows show the current posterior means at test locations
with this alternative kernel choice. The test locations are 1600 points evenly sparsed on a 40 x 40
grid that covers the full range of latitude and longitude of our buoys’ observations. Strengths of
our approach are illustrated in the two colored boxes. In the blue box, our method predicts a strong
current connecting across drifters, in accordance with the known continuity of currents (the idea that
when a fluid is in motion, it must move in such a way that mass is conserved). Furthermore, in the
pink box we now see the expected vortex between the two lines of current. Finally, note that fitting
our new model takes approximately 3.10 seconds (0.75 s for building the kernel matrix); fitting the
standard model takes about 2.66 s (0.4 s for the kernel).
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Discussion and future work. Challenges remain. For instance, Figure 1b demonstrates that our
model has an (unrealistic) tendency to close vortices within a short space horizon. We expect that
further model development can address this issue – e.g., by incorporating multiple lengthscales (an
idea supported by oceanographic prior knowledge) or even summing over both types of kernels.
Another extension of interest is allowing currents to vary in time.
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thesis, Linköping University Electronic Press, 2015.

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling magnetic fields using gaussian
processes. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 3522–3526. IEEE, 2013.

C. Zhang, H. Wei, Z. Liu, and X. Fu. Characteristic ocean flow visualization using helmholtz
decomposition. In 2018 Oceans-MTS/IEEE Kobe Techno-Oceans (OTO), pages 1–4. IEEE, 2018.

C. Zhang, H. Wei, C. Bi, and Z. Liu. Helmholtz–hodge decomposition-based 2d and 3d ocean
surface current visualization for mesoscale eddy detection. Journal of Visualization, 22, 01 2019.

A Related work

Recent works have implemented GP regression to learn characteristic features of the oceans from
drifter data. In Gonçalves et al. [2019], the authors model drifter traces with a GP with squared-
exponential covariance function characterizing how the correlation in the direction and magnitude
of the currents decay with latitude, longitude, and time, at two different scales. Lodise et al. [2020]
further develop, apply, and validate this approach, by exploring three different variations of the
core GP regression method. In both of these works, the components of the 2D velocity field are
separately modeled as independent GPs, and we show that this leads to a poor reconstruction of some
important ocean’s features, e.g., eddies. In this work, we overcome this problem by performing the
GP regression in the latent space obtained through an Helmholtz decomposition.

The Helmholtz decomposition has been used extensively in the oceanographic literature as a way to
interpret and visualize currents’ features when the field is observed on a grid [Rocha et al., 2016,
Zhang et al., 2018, 2019, Han and Huang, 2020, Bühler et al., 2014, Caballero et al., 2020]. These
authors decompose ocean currents into vortical (divergence-free) and divergent (curl-free) compo-
nents of the flow, and different characteristic ocean features are recognized with different compo-
nents: eddies, which are rotational, are only present in the vortical component; fronts, being irrota-
tional, are only present in the divergent one. These works, however, rely mostly on measurements
from satellites, which unfortunately have spatial and temporal resolution that is too coarse to pre-
cisely capture most of the features of interest [Fu and Ferrari, 2008, Chavanne and Klein, 2010, Fu
et al., 2010]. Moreover, they assume data are available on a dense grid, which is not the case for real
ocean current data. As a consequence, to more accurately capture behaviors about ocean features
at this resolution, researchers release GPS-tagged buoys in the ocean – and track the corresponding
surface drifter traces, varying across time and space [Poje et al., 2014, Berta et al., 2015, Mariano
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et al., 2016, Novelli et al., 2017, Haza et al., 2018]. Since many patches of ocean end up having no
observations, there is inherent modeling uncertainty that must be confronted, and the problem gets
challenging. In particular, it is not obvious how to simultaneously interpolate and extrapolate away
from drifter data, with an appropriate measure of uncertainty, while still leveraging the Helmholtz
decomposition to learn structures of ocean currents.

In the GP literature, it is well known that specific covariance functions can be used to capture curl-
and divergence-free vector fields [Alvarez et al., 2012, Fuselier Jr, 2007, Lowitzsch, 2002]. But
existing work does not directly apply in the setting at hand. In Macêdo and Castro [2010], the authors
model fluids with matrix valued radial-basis kernels, built for curl- and divergence-free vector fields.
However, no guidance is provided on what to do when there are prior beliefs, or making inference
about the underlying potential functions. Moreover, their predictions do not comprise a measure
of uncertainty. The same kernels are used in modeling magnetic fields, where Maxwell’s equations
give intuitive explanation of the two components [Wahlström et al., 2013, Wahlström, 2015]. These
works, though, use a different observation model (the vector field of interest is not observed), focus
on 3D and not 2D, and model the curl- and divergence-free components directly, rather than the
scalar fields that are then passed through the gradient operators. This is done in Solin et al. [2018],
where the magnetic field components are modeled jointly by imposing a GP prior to the latent scalar
potential of the magnetic field. Their results confirm the intuition that modeling directly the latent
potentials has some advantages, but cannot be applied to our setting, where we decompose the ocean
vector field into the sum of a curl- and a divergence-free component.

Finally, a recent work from the deep learning community [Greydanus and Sosanya, 2022] extended
Hamiltonian Neural Networks [Greydanus et al., 2019] in such a way that, the authors suggest,
allows to model both curl- and divergence-free dynamics simultaneously, for example for recon-
structing surface flows from a noisy ocean current dataset. Although the prediction problem is
similar, this method does not allow to incorporate prior beliefs, which instead is a key feature for
the hyperparameter tuning of our model. Furthermore these authors only attempt their approach on
low-resolution data which is already available on a low-spatial resolution grid, and it is unclear how
this method applies to ocean drifter data at the resolution we are interested in. In particular, this
method seems to strongly rely on having a dense grid of data, and more work would need to be done
to adapt this to our drifter data.

B Divergence, gradient, and curl operators in 2D

Consider a scalar-valued differentiable function f : R2 → R. The gradient of f is the vector-valued
function ∇f whose value at point x is the vector whose components are the partial derivatives of f
at x. Formally,

∇f(x) =

[
∂f(x)
∂x(1)

∂f(x)
∂x(2)

]
= î

∂f(x)
∂x(1)

+ ĵ
∂f(x)
∂x(2)

where î and ĵ represents, respectively, the standard unit vectors in the direction of the x(1) and x(2)

coordinates. From this rewriting, one can note that taking the gradient of a function is equivalent to
taking a vector operator ∇, called del:

∇ = î
∂

∂x(1)
+ ĵ

∂

∂x(2)
=

(
∂

∂x(1)
,

∂

∂x(2)

)
Using this operator, two operations on vector fields can be defined.
Definition 1. Let A ⊂ R2 be an open subset and let F : A → R2 be a vector field. The divergence
of F is the scalar function divF : A → R, defined by

divF (x) := (∇ · F )(x) =
∂F (1)

∂x(1)
+

∂F (2)

∂x(2)

Definition 2. Let A ⊂ R2 be an open subset and let F : A → R2 be a vector field. The curl of F is
the scalar function curlF : A → R, defined by

curlF (x) :=
∂F (1)

∂x(2)
− ∂F (2)

∂x(1)
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Note that this curl definition follows directly from the definition of curl in three dimensions, where
this quantity describes infinitesimal circulation.

In the 3D world, curl and divergence are enough to characterize the Helmholtz decomposition. For
the 2D version, however, we need to characterize an additional operator - which we call vorticity
operator - that plays the role of the standard curl operator in the 3D version.
Definition 3. Let f : R2 → R be a scalar field. The vorticity of f is the vector field ∇× f, defined
by

∇× f =

[ ∂f
∂x(2)

−∂f
∂x(1)

]
= î

∂f

∂x(2)
− ĵ

∂f

∂x(1)

where î and ĵ represents, respectively, the standard unit vectors in the direction of the x(1) and x(2)

coordinates.

Note that we use the notation ∇× to draw the parallel with the curl operator in three dimension.
The ideas of gradient, divergence, vorticity, and curl lead to the following characterization of vector
fields.
Definition 4. A vector field F : A → R2 is called rotation-free (or curl-free) if the curl is zero,
curlF = 0, and it is called incompressible (or divergence-free) if the divergence is zero, divF = 0.
Proposition 2. Let f be a scalar field and C2 the class of functions whose second derivatives exist
and are continuous.

1. If f is C2, then curl(∇f) = 0. Every gradient of a scalar field is rotation free.

2. If f is C2, then div(∇× f) = 0. Every vorticity of a scalar field is incompressible.

Proof. For (1), we have the following:

curl(∇f) = curl

[
∂f(x)
∂x(1)

∂f(x)
∂x(2)

]
=

∂f(x)/∂x(1)

∂x(2)
− ∂f(x)/∂x(2)

∂x(1)
= 0.

For (2):

div(∇× f) = div

[
∂f(x)
∂x(2)

−∂f(x)
∂x(1)

]
=

∂f(x)/∂x(2)

∂x(1)
+

−∂f(x)/∂x(1)

∂x(2)
= 0.

For more material on vector calculus, we refer the reader to Arfken and Weber [1999].

C Proof Proposition 1

First, we state a more complete version of Proposition 1, that we are going to prove.
Proposition. Let F be the ocean current vector field and Φ and Ψ the divergence and vorticity
components of an Helmholtz decomposition of the field, respectively. If

Φ ∼ GP(0,KΦ) Ψ ∼ GP(0,KΨ).

then the prior on the original vector field F is a GP as well,
F ∼ GP(0,∇KΦ +∇KΨ)

where, for each pair of datapoints xm, xm′ ,

∇KΦ(xm, xm′) :=


∂2KΦ(xm, xm′)

∂x
(1)
m ∂x

(1)
m′

∂2KΦ(xm, xm′)

∂x
(1)
m ∂x

(2)
m′

∂2KΦ(xm, xm′)

∂x
(2)
m ∂x

(1)
m′

∂2KΦ(xm, xm′)

∂x
(2)
m ∂x

(2)
m′

 ,

∇KΨ(xm, xm′) :=


∂2KΨ(xm, xm′)

∂x
(2)
m ∂x

(2)
m′

−∂2KΨ(xm, xm′)

∂x
(2)
m ∂x

(1)
m′

−∂2KΨ(xm, xm′)

∂x
(1)
m ∂x

(2)
m′

∂2KΨ(xm, xm′)

∂x
(1)
m ∂x

(1)
m′

 .
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Proof. Recall first of all that since differentiation is a linear operator, the derivative of a Gaussian
process is another Gaussian process. This implies that we can make inference based on the joint
Gaussian distribution of function values and partial derivatives. In particular, a covariance function
k(·, ·) on function f on covariate space R2 implies the following covariance between (mixed) partial
derivatives

Cov
(
∂f(xm)

∂x
(i)
m

,
∂f(xm′)

∂x
(i)
m′

)
=

∂2k(xm, xm′)

∂x
(i)
m ∂x

(i)
m′

(2)

for i, j ∈ 1, 2. See e.g., paragraph 9.4 in Rasmussen and Williams [2005].

By the Helmholtz decomposition, for each spatial input xm,

F (xm) = ∇Φ(xm) +∇×Ψ(xm) =

[
∂Φ(xm)/∂x

(1)
m + ∂Ψ(xm)/∂x

(2)
m

∂Φ(xm)/∂x
(2)
m − ∂Ψ(xm)/∂x

(1)
m

]
.

Since F is is related to Φ and Ψ just by (mixed) partial derivatives, and Φ and Ψ are two independent
GPs, by the result on derivatives of GPs we have that F is a GP as well. In particular, since both Φ
and Ψ have mean zero, the induced GP on F also has mean zero. For the covariance, for each pair
of datapoints xm, xm′ , we have the following:

Cov
(
F (xm), F (xm′)

)
= Cov

(∂Φ(xm)

∂x
(1)
m

+ ∂Ψ(xm)

∂x
(2)
m

∂Φ(xm)

∂x
(2)
m

− ∂Ψ(xm)

∂x
(1)
m

 ,

∂Φ(xm′ )

∂x
(1)

m′
+ ∂Ψ(xm′ )

∂x
(2)

m′
∂Φ(xm′ )

∂x
(2)

m′
− ∂Ψ(xm′ )

∂x
(1)

m′

)

(i)
=

Cov(∂Φ(xm)

∂x
(1)
m

, ∂Φ(xm′ )

∂x
(1)

m′
) Cov(∂Φ(xm)

∂x
(1)
m

, ∂Φ(xm′ )

∂x
(2)

m′
)

Cov(∂Φ(xm)

∂x
(2)
m

, ∂Φ(xm′ )

∂x
(1)

m′
) Cov(∂Φ(xm)

∂x
(2)
m

, ∂Φ(xm′ )

∂x
(2)

m′
)

+

 Cov(∂Ψ(xm)

∂x
(2)
m

, ∂Ψ(xm′ )

∂x
(2)

m′
) Cov(∂Ψ(xm)

∂x
(2)
m

,−∂Ψ(xm′ )

∂x
(1)

m′
)

Cov(−∂Ψ(xm)

∂x
(1)
m

, ∂Ψ(xm′ )

∂x
(2)

m′
) Cov(−∂Ψ(xm)

∂x
(1)
m

,−∂Ψ(xm′ )

∂x
(1)

m′
)


(ii)
=


∂2KΦ(xm, xm′)

∂x
(1)
m ∂x

(1)
m′

∂2KΦ(xm, xm′)

∂x
(1)
m ∂x

(2)
m′

∂2KΦ(xm, xm′)

∂x
(2)
m ∂x

(1)
m′

∂2KΦ(xm, xm′)

∂x
(2)
m ∂x

(2)
m′

+


∂2KΨ(xm, xm′)

∂x
(2)
m ∂x

(2)
m′

−∂2KΨ(xm, xm′)

∂x
(2)
m ∂x

(1)
m′

−∂2KΨ(xm, xm′)

∂x
(1)
m ∂x

(2)
m′

∂2KΨ(xm, xm′)

∂x
(1)
m ∂x

(1)
m′


:= ∇KΦ(xm, xm′) +∇KΨ(xm, xm′)

where equality (i) follows from the definition of cross-covariance, independence of Φ and Ψ, and
separating the two components’ terms, and equality (ii) follows from Equation (2).

D Hyperparameters’ choice description

In Section 4, we have seen that we have five hyperparameters to choose for fitting our model: σΦ

and ℓΦ for the divergence kernel, σΨ and ℓΨ for the vorticity kernel, and the observation noise σ2.
The optimization procedure is done performing two grid searches inspired by oceanographic prior
knowledge [Esposito et al., 2021]: we know that usually the divergence component is substantially
less strong than the vorticity, whereas the respective lengthscales should be more similar. Exploiting
this information, first we explore a wide range of values for each parameters to understand the gen-
eral magnitude of the hyperparameters. Then, we do a finer search around the optimal values from
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Figure 2: Profile likelihoods plot for the first (coarser) grid search. In each subplot, we highlight
in cyan the area where corresponding hyperparameters lead to maximum log marginal likelihood.
The six subplots are as follows. Top-left: ℓΦ vs. ℓΨ; Top-center: ℓΦ vs. σΦ; Top-right: ℓΨ vs. σΨ;
Bottom-left: ℓΦ vs. σ2; Bottom-center: ℓΨ vs. σ2; Bottom-right:σΦ vs. σ2.

the first search, to actually optimize the hyperparameters’ choice. For both the two grid searches,
we pick the hyperparameters’ combination that maximize the log marginal likelihood.

For the first grid search we have:

• ℓΦ ∈ [1, 5, 10, 30, 50, 100]

• σΦ ∈ [0.05, 0.5, 5, 20]

• ℓΨ ∈ [1, 5, 15, 30, 50, 100]

• σΨ ∈ [0.5, 5, 20, 100]

• σ2 ∈ [0.05, 0.1, 0.5, 1]

We plot the results of this search in Figure 2. For each of the six subplots, we pick two param-
eters (that name the axis, e.g., ls Phi vs. ls Psi for the top-left), and we contour plot the log
marginal likelihood as a function of these two hyperparameters, where the other three are cho-
sen to be the optimal according to our search. In other words, for ℓΦ = 1, ℓΨ = 1, we plot the
value maxσΦ,σΨ,σ2 L(1, σΦ, 1, σΨ, σ

2), where L is the log marginal likelihood function, taking as
input the five parameters (ℓΦ, σΦ, ℓΨ, σΨ, σ

2). We call this plot a profile likelihood plot, in analogy
to profile likelihoods in linear-mixed models, where to optimize likelihood with variable random
effects parameters, I need to take into account the values of fixed hyperparameters. The optimal
combination, highlighted in cyan in the plot, is (ℓΦ, σΦ, ℓΨ, σΨ, σ

2) = (10, 0.5, 15, 5, 0.1). This
confirms our intuition that the divergence component is less strong than the vorticity, and the respec-
tive lengthscales are more similar.

Next, we run the second grid search in a neighborhood of this optimal combination, to refine the
hyperparameters’ choice. In particular, we have:

• ℓΦ ∈ [3, 6, 10, 13, 16, 20]

• σΦ ∈ [0.2, 0.5, 0.7, 1]

• ℓΨ ∈ [8, 12, 15, 20, 24]

• σΨ ∈ [4, 5, 6, 7]

• σ2 ∈ [0.09, 0.1, 0.12, 0.15]

The results of this search are presented in the corresponding profile likelihood plot, Figure 3. In this
case, the optimal combination is (ℓΦ, σΦ, ℓΨ, σΨ, σ

2) = (6, 0.5, 24, 7, 0.1), and this is the hyperpa-
rameters’ choice that leads to the posterior plot in Figure 1b.
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Figure 3: Profile likelihoods for the second (finer) grid search. The six subplots are as in Figure 2. As
before, we highlight in cyan the areas where the hyperparameters’ choice leads to higher marginal
log-likelihood.

E Visualize the Helmholtz decomposition

To provide further intuition on the Helmholtz theorem, we plot a possible decomposition for a vector
field F into the divergence ∇Φ and vorticity components ∇ × Ψ. In the plot, one can see that
from the divergence we can read areas of downwelling/sink (arrows pointing inwards to a single
point) and upwelling/source (arrows pointing outwards from a single point). The vorticity, instead,
characterizes rotational elements of the vector field, e.g., vortices/eddies in our ocean setting.

Figure 4: Helmholtz decomposition of vector field F . Left: original vector field F . Top-right:
divergence component of Helmholtz decomposition of F . Bottom-right: vorticity component of
Helmholtz decomposition of F .
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