
Sparsity in Bayesian Optimization Solutions

Bayesian optimization is used to optimize the objective of 
complex systems. Sometimes we want sparsity in solutions.  
For example, in chemistry reaction, a sparse solution may require 
fewer agents and steps to synthesize a compound. 
• Sparsity means Interpretability 

• helps understand the complex systems 
• Sparsity means Simplicity 

• easier to deploy and maintain

Limitations of Using Regularization Experiments

Bayesian optimization uses Gaussian processes to learn a surrogate model of the 
black-box objective (for example, maximizing chemistry reaction yield), and 

perform sequential optimization based on exploitation-exploration trade-off.
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Regularization in Bayesian Optimization

A penalty term to target feature-level sparsity: 

ξ(x) = ∥x − xs∥0

A user-defined point 
to regularize towards

Sparsity-inducing 
norm

Acquisition function with External Regularization (ER): 

αER(x; λ) = 𝔼f[utility( f(x))] − λξ(x)

Black box function modeled by Gaussian processes posterior 
distribution: 

f(x |𝒟) ∼ 𝒩(μ(x), σ2(x))

Acquisition function with Internal Regularization (IR): 

αIR(x; λ) = 𝔼f[utility( f(x) − λξ(x))]
• ER and IR act differently for different acquisitor functions: 

• ER and IR are effectively different for Expected Improvement 
• ER and IR are identical for Upper Confidence Bound

• Proposition 1 (negative result for ER, informal) 
• If acquisition function is 0 for every  where ’s sparsity  

is less than , then for any , every maximizer will either have 

sparsity greater than  or equal to . 
• Proposition 2 (negative result for IR, informal) 

• Consider , if  is strictly 

convex over some interval across , then there is no 

maximizer of IR with  for any .
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f(x) subject to ξ(x) = k h(k)

̂k
ξ(x) = ̂k λ

Sparsity Exploring Bayesian Optimization 
(SEBO)
• Multi objective approach to optimize sparsity and objective 

• Consider both objective  and sparsity  as objectives 

• Use Expected Hypervolume Improvement (EHVI) as 
acquisition function to effectively optimize multiple 
objectives simultaneously 

 

• Directly optimize  sparsity 

• Use the idea of homotopy,  from 

f ξ

αSEBO(x) = 𝔼f [V(Xobs ∪ {x}) − V(Xobs)]
L0

a astart → 0

φa(x) := D −
D

∑
i=1

exp (−0.5 (xi /a)2) ≈ ∥x∥0

H(x, astart)
H(x, aend)

Optimizing a toy problem: 
black box function  and  
observations 

f (x) = − x2 ξ(x) = ∥x − 0.5∥0
Xobs = {0, 0.25, 0.75, 1.0}

area of the 
shaded region

• Synthetic experiments 
• Low-dimensional synthetic functions embedded in a 50D 

space. 
• SAASBO: a high-dimensional BO method that uses a GP to 

learn to ignore unimportant parameters, but without 
optimizing sparsity in solutions 

• SEBO is the most efficient in identifying optimal sparse 
solutions 

• Real-world experiments 
• Sourcing component of a recommendation system 

• Retrieve items using a weighted combination of multiple 
sources 

• A sparse policy can drop redundant sources or low-quality 
sources, hence increasing interpretability and reducing 
“tech debt” 
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