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Abstract

Bayesian optimization (BO) is a powerful approach to sample-efficient optimization
of black-box objective functions. However, the application of BO to areas such as
recommendation systems often requires taking the interpretability and simplicity
of the configurations into consideration, a setting that has not been previously
studied in the BO literature. To make BO applicable in this setting, we present
several regularization-based approaches that allow us to discover sparse and more
interpretable configurations. We propose a novel differentiable relaxation based on
homotopy continuation that makes it possible to target sparsity by working directly
with L0 regularization. We identify failure modes for regularized BO and develop
a hyperparameter-free method, sparsity exploring Bayesian optimization (SEBO)
that seeks to simultaneously maximize a target objective and sparsity. SEBO and
methods based on fixed regularization are evaluated on synthetic and real-world
problems, and we show that we are able to efficiently optimize for sparsity.

1 Introduction

Bayesian optimization (BO) is a technique for efficient global optimization that is used for parameter
optimization across a wide range of applications, including robotics [25, 5], machine learning
pipelines [21, 33, 36], internet systems [24, 16], and chemistry [17, 15]. In many applications,
including those just mentioned, it is preferable for the optimized parameters to be sparse. One reason
to prefer sparsity is that it increases interpretability, a consideration that has recently attracted a great
deal of attention in machine learning [9, 29]. Interpretability is necessary for humans to be able
to understand and evaluate the outputs of complex systems—the types of systems to which BO is
often applied. In policy optimization, sparsity of the control policy provides a natural way for human
decision-makers to gain insight into the behavior of the system, and identify potential issues [37, 20].
Besides interpretability, sparsity can also be beneficial by producing systems that are easier to deploy
and maintain, reducing the “tech debt” of machine learning systems [30]. In chemistry, a sparse
solution may require fewer reagents and steps to synthesize a compound.

Sparsity in machine learning is often achieved via regularization, such as L1 regularization used by
the lasso [35], the group norm penalty used by the group lasso [43], and L0 regularization which
directly targets setting elements to zero [44]. The purpose of regularization in machine learning
is typically to improve accuracy by reducing generalization error [14]. In our setting, sparsity is
a separate goal; interpretable sparse configurations will generally not improve the optimization
objective, and in fact, may come at some cost to other metrics. A central aspect of this work is to
efficiently learn these trade-offs and offer practitioners a way to balance sparsity and other metrics.

Sparsity in BO is an important topic that has not yet been addressed in the literature. Past work
has used regularization in acquisition function optimization or modeling, but not for the purpose of
sparsity in design parameters. Our work provides a thorough and broad treatment of sparsity in BO
that fills in this gap. The main contributions of this paper are:
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1. We study different approaches for incorporating sparse regularization into BO, and provide
negative theoretical results showing that previously studied forms of regularization can fail to
optimize for certain levels of sparsity, regardless of the regularization coefficient.

2. We draw connections between multi-objective BO and acquisition function regularization, and
show how multi-objective BO can be used for automatic selection of the regularization coefficient.
We refer to this as the SEBO (“Sparsity Exploring Bayesian Optimization”) method.

3. We develop a novel relaxation strategy for optimizing directly for L0 sparsity, and show that it
significantly outperforms the typical L1 penalty in our context.

4. We provide the first results on achieving sparsity via BO, in a range of synthetic functions and on
three real-world tasks (in systems configuration and AutoML). We also show the breadth of our
method by using it to achieve different forms of sparsity such as feature-level and group sparsity.

5. We provide a new high-dimensional benchmark problem designed to emulate trade-offs found in
real-world recommender systems, and show how such systems benefit from increased sparsity.

In Section 2, we first describes two natural approaches for incorporating sparse regularization into
acquisition function optimization, both of which can fail to optimize for some levels of sparsity. Then
we discuss a relationship between sparse BO and multi-objective BO, and describe how we can use
methods from multi-objective BO to simultaneously optimize for all levels of sparsity. We further
describe how we are able to directly optimize with L0 regularization. We demonstrate the usefulness
of our methods by applying them to a set of synthetic and real-world benchmarks in Section 3.

2 Methodology

Consider a Bayesian optimization problem with f being the objective function to optimize and
x ∈ RD being the parameters. (See Appendix S1 for a background review of BO). We use a penalty
term ξ(x) to measure the sparsity of x. The penalty may be an L0 norm to target feature-level sparsity,
ξ(x) = ∥x− xs∥0, or can be adjusted for different forms of sparsity such as group sparsity. Here,
xs is a user-defined point anywhere in the domain that the user wishes to regularize towards. For
instance, it can be an existing system configuration, and the regularization can help with reducing
changes to the system, for the purpose of interpretability, maintaining system consistency, and safety.

Regularization in acquisition functions Perhaps the most straightforward approach for adding
regularization to acquisition optimization is simply to add a regularization penalty directly to the
acquisition function. This parallels the approach taken in regression with techniques like ridge
regression and the lasso. Given a penalty term ξ(x), we then maximize

αER(x;λ) = α(x)− λξ(x) (1)
to select the next point for evaluation. We refer to this approach as external regularization (ER).

An alternative approach for adding regularization to the acquisition optimization is to add it directly to
the objective function. In this approach, instead of using the posterior of f to compute the acquisition
function, we compute the acquisition for the posterior of a regularized function:

g(x;λ) = f(x)− λξ(x). (2)
We refer to this as internal regularization (IR). In Appendix S2, we provide more details on the
differences of the two approaches and how they behave under the most commonly used expected
improvement (EI) acquisition function.

There are two fundamental challenges with both of the regularization approaches. The first is that
they both have a regularization coefficient λ that must be set. In sparse BO, if there is a known
desired level of sparsity, λ can be swept to find a value that produces candidates with the desired
level of sparsity. But often times, the desired level of sparsity is typically not known a priori in real
applications. When there is a trade-off between interpretability and system performance, the desired
level of interpretability will depend on what that trade-off looks like. In practice, we thus wish to
identify the best-achievable objective at any particular level of sparsity. The second challenge is
that, due to theoretical limitations of ER and IR identified in our analysis (Propositions 1 and 2 in
Appendix S2), we may not be able to find the entire objective vs. sparsity trade-off using ER or IR,
no matter how λ is swept. Depending on the problem, it may be that the sparsity levels of interest
cannot be explored via either regularization strategy. Next, we show that both of these challenges can
be addressed by viewing sparse BO from the lens of multi-objective BO.
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Sparse BO as Multi-Objective BO In this section we introduce the Sparsity Exploring Bayesian
Optimization method (SEBO), which takes a multi-objective approach to sparse BO. Rather than
considering ξ as a penalty applied to the objective, we consider f and −ξ to each be objectives
that we wish to maximize. Casting sparse BO as Multi-Objective BO (MOO) of the objective and
sparsity has several advantages. It provides a solution for setting the regularization coefficient λ,
e.g. f − λξ, which is required as in the classical regularized regression setting. The coefficient
λ decides the desired level of sparsity which is often unknown in real applications. When there
is a trade-off between interpretability and system performance, the desired level of interpretability
will depend on what that trade-off looks like. Instead, we can use MOO methods such as Expected
Hypervolume Improvement (EHVI) to select points that maximize performance for all levels of
sparsity, or equivalently, maximize sparsity for all levels of performance, explicitly optimizing for the
entire regularization path. The goal of MOO is to identify the optimum for every level of sparsity,
which enables decision makers to make an informed trade-off between interpretability and other
considerations of system performance.

In our experiments, we use the EHVI acquisition function. Here, the hypervolume improvement is
defined with respect to a worst-case reference point r = [rf , rξ], can be set to estimates for the mini-
mum and maximum values of f and ξ respectively. Given a set of observations Xobs = {x1, . . . ,xn},
the Pareto hypervolume of that set is defined as V (Xobs) = λM

(⋃n
i=1

(
[rf , rξ]× [f(xi), ξ(xi)]

))
,

where λM denotes the Lebesgue measure. The expected hypervolume improvement is computed as

αSEBO(x) = Ef

[
V (Xobs ∪ {x})− V (Xobs)

]
. (3)

We call this acquisition function SEBO, and explore its performance in combination with the L0

sparse regularization, described next. This acquisition function is hyperparameter-free, and, as we
will see, is highly effective for sparse BO.
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Figure 1: 1D problem to optimize
−x2 with an L0 penalty ∥x − 0.5∥0.
The global optimum of the acquisition
function is given by the sparse point
x = 0.5. Optimizing the acquisition
function along the continuous homo-
topy path starting at astart = 10−0.5

allows us to eventually uncover find
the true optimum of x = 0.5.

Optimizing Acquisition Functions with L0 Sparsity Op-
timizing acquisition functions with L0 sparsity is chal-
lenging since the L0 norm is discontinuous. We lever-
age the idea of homotopy continuation [1] that defines
a homotopy H(x, a), where H(x, astart) corresponds to a
problem that is easy to solve and H(x, aend) corresponds
to the target problem. In particular, for a > 0 we de-
fine H(x, a) = Ef [u([f(x), φa(x)])] where φa(x) :=

D −
∑D

i=1 exp
(
−0.5 (xi/a)

2
)
≈ ∥x∥0. Note that un-

der the assumption of a continuous utility u(x) , we have
that lima→0+ H(x, a) = Ef [u([f(x), ∥x∥0])], which corre-
sponds to the original acquisition function with the L0 norm.

We will start at some value astart large enough to make the
acquisition function easy to optimize and decrease a towards
aend = 0. Each time we change a we re-optimize the acqui-
sition function starting from the best solution found for the
previous value of a. This idea is illustrated in Fig. 1 where
we consider the 1D problem of using SEBO to optimize
f(x) = −x2 with an L0 penalty ∥x − 0.5∥0 and assume
Xobs = {0, 0.25, 0.75, 1.0} have already been evaluated.

3 Experiments

We evaluate EI-IR, EI-ER and SEBO on two synthetic and three real-world problems. We compare
performance to quasi-random search (Sobol), BO with a standard ARD Matérn-5/2 kernel and the EI
acquisition function (GPEI), and SAASBO. Our experiments all have high-dimensional parameter
spaces, so we use the SAAS GP model in [12] when optimizing with SEBO. We show the results
using L0 regularization for most problems except for the adaptive bitrate simulation (ABR) problem,
where the group lasso is used to demonstrate that the methods can be applied to recover different
forms of sparsity, such as group sparsity. Due to limited space, we defer the experiments on synthetic
problems and ABR to Appendix S5.2. Ablation studies on L0 v.s. L1, and the importance of using
homotopy continuation are included in Appendix S6.
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Ranking sourcing system simulation: The task is to optimize a 25-dimensional retrieval policy in
the sourcing component of recommender systems. We developed a simulation of a recommender
sourcing system that simulates the quality and infrastructure load of recommendations produced by a
particular sourcing policy. The sourcing system is modeled as a topic model, where each source has a
different distribution over topics, and topics have different levels of relevance to the user. When two
sources are (topically) similar to one another, they may obtain duplicate items, which will not improve
recommendation quality. Our goal is thus to identify a retrieval policy that uses a minimal number of
sources while still maximizing the ranking quality score, measured by a function of content relevance
and infrastructure load. Our desired sparsity is to set parameters to 0, i.e., turning off the source.

SVM machine learning hyperparameter tuning: We consider the problem of doing joint feature
selection and hyperparameter (C, ε, and γ) tuning for a support vector machine (SVM). The scale
factor for each feature is in the continuous range [0, 1], where sparsity means removing the feature with
scale factor 0. For hyperparameters, we took C ∈ [0.01, 1.0], ε ∈ [0.01, 1.0], and γ ∈ [0.001, 0.1],
where the center of each interval was considered sparse as this is the default value in Sklearn. We
used 100 features from the CT slice UCI dataset [10] and the goal was to minimize the RMSE on the
test set. This produces a 103D optimization problem.

The objective-sparsity trade-offs of the two problems are shown in Fig. 2. Sobol and GPEI could
not find sparse policies. In general, IR and ER are more effective than SAASBO in finding sparse
policies, which shows regularization helps. SEBO-L0 performs the best in optimizing the objective
under different sparsity levels, dominating all other methods across different problems.
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Figure 2: Objective-sparsity trade-offs after 100 trials for the two real-world problems. (Left)
Sourcing problem: SEBO-L0 regularization effectively explored all sparsity trade-offs. (Right) SVM
problem: ER with λ = 0.01 and IR with λ = 0.01 were able to explore parts of the Pareto frontier,
however were dominated by SEBO-L0.
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Figure 3: The heatmap of average re-
trieval policy values at different spar-
sity levels.

Interpretation of sparse solutions: We also examine what
sources are selected in the recommender sourcing system
problem to understand the obtained SEBO-L0 solutions.
Across 20 replications, we obtain the Pareto-optimal 25-
dimensional retrieval policy and compute the average of
retrievals per source at each sparsity level. For each source,
we compute a source quality scores based on the simulation
setup stated in S5.1. Fig. 3 visualizes the average number of
items retrieved from each source at different sparsity levels.
Each column corresponds to one source and is sorted based
on source quality score in an ascending order (from left to
right); each row represents the sparsity level (number of ac-
tive dimensions). The color indicates the parameter values.
It is observed that sources with low quality scores are turned
off (zero query) and sources with higher scores have higher
number of retrievals even with smaller active dimensions. This indicates that the SEBO sparse policy
identifies the most effective sources and prioritizes to retrieve from the high-quality sources first.
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Appendices for Sparse Bayesian Optimization

S1 Background and Related Work

Bayesian Optimization: Shahriari et al. [31] provide a thorough review of BO. In short, the goal
is to maximize a black-box function f : RD → R over a compact set B ⊂ RD. We will assume
that f is continuous and bounded on this domain. For simplicity, we also assume that the domain is
the unit hypercube [0, 1]D. At each iteration of optimization, f is modeled with a Gaussian process
(GP) given the function evaluations observed so far, producing the normally distributed posterior
f(x) ∼ N (µ(x), σ2(x)). The location of the next function evaluation is selected by maximizing
an acquisition function α(x) := Ef [u(x)] where u is a utility function that defines the acquisition
function. Typical acquisition functions include the expected improvement [EI, 22] and the upper
confidence bound [UCB, 34]. EI is given by

αEI(x) = Ef [(f(x)− f(x∗))+] , (S1)

where x∗ is the best point observed so far. EI has a well-known analytic form in terms of the marginal
posterior mean and variance. UCB is similarly computed directly from the marginal posterior,

αUCB(x) = µ(x) +
√

βσ(x), (S2)

where β is a hyperparameter that controls the exploration-exploitation trade-off. More recently,
information-theoretic acquisition functions have been developed [19, 38].

Regularization in BO: Regularization has been applied to acquisition function optimization,
though not for the purpose of sparsity. Shahriari et al. [32] used regularization for unbounded BO, in
which there are no bounds on the search space. They applied a form of L2 regularization to the EI
target value that penalized sampling points far from the initial center of the search space. González
et al. [18] used regularization for batch BO, where the penalty discouraged points from being chosen
close to points that had already been selected for the batch. This penalty is applied by multiplying the
original acquisition function value by a penalty term.

BO with Sparse Models: Eriksson and Jankowiak [12] introduced the sparse axis-aligned sub-
spaces (SAAS) function prior in which a structured sparse prior is induced over the inverse-squared
kernel lengthscales {ρi}di=1 to enable BO in high dimensions. The SAAS prior has the form
τ ∼ HC(α), ρi ∼ HC(τ) whereHC is the half-Cauchy distribution which concentrates at zero. The
goal of the SAAS prior is to turn off unimportant parameters by shrinking ρi to zero, which avoids
overfitting in high-dimensional spaces, thus enabling sample-efficient high-dimensional BO. The
global shrinkage parameter τ controls the overall model sparsity: as more observations are made, τ
can be pushed to larger values, allowing the level of sparsity to adapt to the data as needed.

While sparsity in the GP model is different from the sparsity we seek here, we will show that combin-
ing the SAAS model with acquisition regularization is highly effective for sparse high-dimensional
BO. By enforcing regularization in the acquisition function, the parameters identified as unimportant
will be set to their baseline values, generating simpler and more interpretable policies. Other work has
studied feature sparsity in GP regression but without considering sparsity in optimization [27, 28].

Multi-Objective BO: Multi-objective BO is used when there are several (often competing) ob-
jectives f1, . . . , fm and we wish to recover the Pareto frontier of non-dominated configurations. A
popular method in this setting is ParEGO, which applies the standard single-objective EI acquisition
function to a random scalarization of the objectives [23]. Many types of scalarizations have been
developed for transforming multi-objective optimization (MOO) problems into single-objective
problems [11]. Recent work on multi-objective BO has focused on developing acquisition functions
that explicitly target increasing the hypervolume of the known Pareto frontier with respect to a
pre-specified reference point. Acquisition functions in this class, such as Expected Hypervolume
Improvement (EHVI), are considered state-of-the-art for multi-objective BO [42, 7, 8].
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S2 Regularization in Acquisition Functions

In this section, we analyze the properties and failure modes of both ER and IR approaches in details.

S2.1 External Regularization

For our analysis of regularization in this paper, we will assume that xs is the unique global minimum
of ξ(x). The regularization coefficient λ must be set, just as in the classical regularized regression
setting. This formulation separates the explore/exploit value of a point, encoded in α, from its sparsity
value, encoded in ξ. This can perform poorly, because there is necessarily interaction between these
two notions of value. We now provide a negative result showing that external regularization cannot
capture certain levels of sparsity.

Proposition 1. Suppose α(x) = 0 for every x where ξ(x) ≤ θ. Then, for any value of λ > 0, every
maximizer of αER(x;λ) will satisfy ξ(x) > θ, or will equal xs.

This result is proved in Section S2.3 in the supplementary material. If the acquisition value is 0
whenever the sparsity penalty is below a certain level θ, external regularization will not be able to
recover any points with sparsity penalty below that level, other than the trivial point of maximum
sparsity. Empirically, this manifests itself by the regularized acquisition choosing non-sparse points,
or repeatedly sampling xs.

A setting where the acquisition value is 0 for all sparse points is easily encountered in practice when
there is a trade-off between the objective function and sparsity, and we have sampled a point close to
the (non-sparse) optimum. Consider the EI acquisition function with external regularization:

αEI-ER(x;λ) = Ef [(f(x)− f(x∗))+]− λξ(x). (S3)

Once the GP is confident that sparse points have worse objective value than non-sparse points, sparse
points will have acquisition value approximately 0, as their improvement is being evaluated with
respect to a non-sparse incumbent best x∗. By Proposition 1, sparse points will then not be selected
by the regularized acquisition function, regardless of how λ is tuned. Increasing λ will change
the maximum of the regularized acquisition function from a non-sparse point directly to the trivial
solution of xs, skipping all levels of sparsity in between. There is nothing in (S3) to enable the
acquisition function to select sparse points that improve over other points with a similar level of
sparsity, which is necessary to fully explore the sparsity vs. objective trade-off.

S2.2 Internal Regularization

The goal of the acquisition function in (2) is to maximize g, which can be made to have a sparse
maximizer by appropriately setting λ. With internal regularization, EI becomes

αEI-IR(x;λ) = Ef [(g(x)− g(x∗))+] = Ef [(f(x)− f(x∗)− λ(ξ(x)− ξ(x∗)))+] (S4)

where x∗ is now the incumbent-best of g, not of f . The difference between external and internal
regularization depends on the acquisition function. It is easy to see that for the UCB acquisition of
(S2), they are identical. For EI they are not, as seen by comparing (S3) and (S4). For EI, internal
regularization avoids some of the issues of external regularization by incorporating sparsity directly
into the assessment of improvement. In (S4), improvement is measured both in terms of increase
of objective and increase in sparsity, and it is measured with respect to an incumbent best that has
incorporated the sparsity penalty. However, internal regularization can also be incapable of recovering
points at every level of sparsity, as we will show now. For this result, we are interested in the optimal
objective value as a function of sparsity level:

h(θ) = max
x∈B

f(x) subject to ξ(x) = θ. (S5)

A trade-off between sparsity and objective would result in h(θ) increasing with θ, though it need not
be strictly increasing. We now give the negative result for internal regularization, which assumes that
ξ is continuous and bounded. See the supplementary material for more details.

Proposition 2. For any θ in the interior of an interval where h is strictly convex, there is no maximizer
of (2) with ξ(x) = θ, for any λ > 0.
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This result shows that internal regularization can only hope to recover optimal points at all sparsity
levels if h is concave on its entire domain. This is a strong condition, one unlikely to hold for the
types of functions typically of interest in BO, even with simple regularizers. Note that this result
is independent of the choice of λ and the acquisition function used. If the desired level of sparsity
happens to lie within a region where h is strictly convex, internal regularization can be expected to
fail to find the optimum. Fig. S1 in the supplement shows an illustration of this result, in a problem
where h has a region of strict convexity.

We will see in the empirical results that internal regularization performs better than external regu-
larization, though, consistent with Proposition 2, can fail to cover the entire objective vs. sparsity
trade-off. For EI with internal regularization, the expectation in (S4) no longer has the closed form
of regular EI, however this acquisition function can easily be computed and optimized using Monte
Carlo methods [41, 2]. In this paper we focus on EI, but both forms of regularization can be applied
to any acquisition function, including entropy search methods. In entropy search, the acquisition
function evaluates points according to their information gain with respect to the current belief about
the location or function value of the optimum. The information gain will thus depend on the level
of sparsity in a similar way as with EI, and so external vs. internal regularization have similar
considerations.

S2.3 Proofs

Here we provide the proofs of Propositions 1 and 2, as well as an illustration of the result of
Proposition 2.

Proof of Proposition 1. Suppose x† ∈ argmaxαext(x;λ) and ξ(x†) ≤ θ. Then, α(x†) = 0, so
αext(x†;λ) = −λξ(x†).

By x† being a maximizer of αext we must have

−λξ(x†) = αext(x†;λ) ≥ αext(xs;λ) = −λξ(xs).

Thus ξ(x†) ≤ ξ(xs). Because xs is a strict global minimum, we have then that x† = xs.

We assume ξ is continuous and bounded, which implies h is continuous and bounded:
Assumption 1. ξ is continuous on B, and has minimum value ξ(xs) = sl and maximum value su.
Proposition 3. h is continuous and bounded on the domain [sl, su].

Sketch of Proof. This result falls from the continuity and boundedness of f , and by applying the
intermediate value theorem to ξ.

Proof of Proposition 2. Suppose h is strictly convex over the interval [θl, θu]. For the sake of con-
tradiction, assume that there exists a θ† ∈ (θl, θu) and an x† such that x† ∈ argmax g(x;λ) and
ξ(x†) = θ†.

It is clear that x† ∈ argmax f(x) subject to ξ(x) = θ†, otherwise the point with strictly larger
f and equal ξ value would have a higher value for g, and x† could not be optimal for g. Thus,
f(x†) = h(θ†).

We can express θ† = tθl + (1− t)θu for some t ∈ (0, 1). By strict convexity of h on this interval,
we have that

h(θ†) < th(θl) + (1− t)h(θu). (S6)
Take xu ∈ argmax f(x) subject to ξ(x) = θu, and xl ∈ argmax f(x) subject to ξ(x) = θl. These
are the points in B corresponding to h(θl) and h(θu). The optimality of x† implies that g(x†;λ) ≥
g(xu;λ) and g(x†;λ) ≥ g(xl;λ). Thus,

g(x†;λ) ≥ tg(xl;λ) + (1− t)g(xu;λ)

h(θ†)− λθ† ≥ th(θl)− tλθl + (1− t)h(θu)− (1− t)λθu
h(θ†) ≥ th(θl) + (1− t)h(θu), (S7)

using θ† = tθl + (1− t)θu. The result in (S7) contradicts the convexity in (S6), and so x† cannot be
optimal for g.
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Figure S1: An illustration of the internal regularization result in Proposition 2. (Left) The objective
f is a modified Branin function. The sparsity penalty ξ is the L1 norm. (Right) The optimal objective
vs. sparsity trade-off, h(θ), shows the best-achievable objective value for any specified value of L1

norm. The shaded region is an interval where h is strictly convex. By Proposition 2, the regularized
function in (2) has no maximizers with L1 norm in that range, for any value of λ.

Fig. S1 shows an illustration of the result of Proposition 2 on a log-transformed version of the classic
Branin problem, where f(x1, x2) = − log(10 + Branin(x1, x2)), and we are using a traditional L1

regularization penalty, ξ(x1, x2) = |x1|+ |x2|. The right panel shows h(θ), from (S5), as it traces
the trade-off from the minimum of ξ to the maximum of f . There is a wide interval of L1-norm
values in the middle, 0.4 to 2.7, where h(θ) is strictly convex. By Proposition 2, there is no value of
λ under which the maximizer of (2) has L1 norm in that range. That range of sparsity levels thus
cannot be reached by maximizing the regularized function g.

S3 Relationship between ParEGO and Internal Regularization

Remark 1. Internal regularization can be viewed as a linear scalarization of the two objectives f
and−ξ, with λ the weight. Linear scalarizations are commonly used in MOO [26]. In this section, we
discuss the connection between internal regularization and the ParEGO method for multi-objective
BO.

As described in Section S1, ParEGO applies the EI acquisition function to a random scalarization
of multiple objectives. With internal regularization, random sampling of λ for each acquisition
optimization produces a ParEGO-style strategy for sparse BO, that differs only in the form of the
scalarization.

The inability of linear scalarizations to capture the entire Pareto front, seen in Proposition 2, is a
well-known failure mode for MOO. This result has inspired a large number of alternative scalariza-
tions [6]. ParEGO avoids the issue by replacing the linear scalarization with an augmented Chebyshev
scalarization [4]. When applied to the context of sparse regularization, this means maximizing

T (x;λ) = C(f(x)− λξ(x))−max(f∗ − f(x), λ(ξ(x)− ξ(xs)),

where f∗ is an estimate for the maximum of f and C is a constant, usually set to 0.05. Unlike g in
(2), maximizers of T span the entire objective vs. sparsity trade-off [23]. Using EI to optimize this
regularized function with randomly sampled values of λ is equivalent to applying ParEGO to the
objective and the (negative) sparsity penalty.

S4 Optimization with L0 Sparsity

S4.1 Homotopy continuation

In this section we provide some additional details for the homotopy continuation described in Sec. 2.
For computational reasons, we use a sequence of 30 a’s starting from astart = 10−0.5 and ending
at 10−3 that is linearly spaced on a log-scale. First, we optimize the acquisition function using

4



L-BFGS-B from 20 different starting points to obtain 20 local optima of H(x, astart). We then
increment the value of a and use L-BFGS-B to re-optimize the homotopy starting from each of
the previously found 20 local optima. This process is continued until we reach a = 0 which is the
acquisition function corresponding to the true L0 norm. Note that this procedure traces 20 curves
c(a) ∈ argminx H(x, a) from a = astart to a = 0 and that this curve is of finite length under the
assumption that the domain is compact. These curves are potentially different as the acquisition
function may be non-convex and have multiple local optima. Finally, we choose the candidate as the
point that achieves the best acquisition function value.

We use astart = 10−0.5 as it strikes a balance between being large enough to find initial points with
non-zero acquisition function values, and being small enough to discover points that are almost
sparse. To better understand this choice note that maxx,z∈[0,1]

∣∣φ′
10−0.5(x− z)

∣∣ ≈ 0.067 while, e.g.,
maxx,z∈[0,1] |φ′

0.1(x− z)| ≈ 2× 10−20 which shows that 0.1 may be too small to serve as astart. We
also investigate this choice in an ablation study in Appendix S7.2 and find that the performance of
SEBO-L0 is not sensitive to the choice of astart as long as the value is not too small.

S4.2 SEBO algorithm

The SEBO-L0 method is described in Algorithm 1. We start with an initial space-filling experiment
design. In each iteration step, we fit a SAAS GP model and optimize the acquisition function to find
the next point to evaluate, as shown at line 1. When optimizing the acquisition function, homotopy
continuation is used to handle the discontinuous L0 norm. This part is shown on line 11.

Algorithm 1 Sparsity Exploring Bayesian Optimization with L0 norm (SEBO-L0)
1: procedure SEBO-L0 ▷ Outer loop of BO
2: Place a Gaussian Process prior on f
3: Observe f at n0 quasi-random initial points and get the initial dataset Dn0

4: for n← n0 + 1 to N do
5: Update the posterior probability distribution on f using observed data Dn−1

6: Select the next point xn ← OPTIMIZE-HOMOTOPY(f̂n)
7: Evaluate xn: Dn ← {Dn−1, (xn, f(xn))}
8: end for
9: return The best point

10: end procedure

11: procedure OPTIMIZE-HOMOTOPY(f̂ ) ▷ Optimize SEBO-L0 acquisition function
12: Define a homotopy H(x, a) using the posterior on f
13: Initialize a candidate pool Xa ← {}
14: for a← astart to aend do
15: xa ← maximize H(x, a) based on the best points in Xa

16: Xa ← {Xa,xa}
17: end for
18: return xa

19: end procedure

S5 Additional Experimental Studies

S5.1 Ranking sourcing system simulation

In the sourcing simulation experiment in Section 3, the recommender sourcing system has 25 content
sources and 1000 possible pieces of content (i.e., items) for retrieval. We consider a 25-dimensional
retrieval policy x over the integer domain [0, 50]25. We take inspiration from the Latent Dirichlet
Allocation (LDA) model [3] in defining a generative probabilistic model of items recommended by
each source. We assume there are 8 latent topics and that each item can be represented as a mixture
over topics. Each source contains a mixture over a set of topics, and particular items will be more
likely to be recommended by topically related sources. Such topical overlaps can create redundancy
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of recommendations across sources. Retrieving more items from additional sources comes at a cost
making sparse retrieval policies preferred.

Before describing the simulation in pseudo-code, we need the following definitions:

• T is the number of latent topics.

• K is the number of distinct items.

• S is the number of content sources.

• θs ∈ ∆T is the topic distribution for source s, where ∆T denotes the T -dimensional simplex.
{θs}Ss=1 follow a Dirichlet distribution, i.e., θs ∼ Dir(α) where α = 0.2.

• ϕi ∈ ∆K is the item distribution for each topic i, where ∆K denotes the K-dimensional
simplex. {ϕi}Ti=1 also follow a Dirichlet distribution, i.e., ϕi ∼ Dir(β) where β = 0.5.

• zs,k is the topic assignment for item k in source s and follows multinomial distribution:
zs,k ∼ Multi(θs)

• ws,k is the indicator of item k is retrieved from source s and follows multinomial distribution:
ws,k ∼ Multi(ϕzs,k).

• Qi is the relevance score of each topic i and is sampled from a log-Normal distribution with
mean 0.25 and standard deviation 1.5.

• mk is the relevance score of each item k, which is derived as the weighted average across
topic scores based on the item distribution over 8 latent topics, i.e., mk =

∑T
i=1 ϕi,kQi.

• cs is the infrastructure cost per fetched item for source s. The cost cs is assumed to be
positively correlated with source relevance score qs =

∑T
i=1 θs,iQi and follows a Gaussian

distribution with mean qs
2
∑S

s=1 qs
and standard deviation of 0.1.

To simulate the retrieval of one item from the source s, we sample a topic for an item k from the
multinomial Multi(θs), i.e., zs,k ∼ Multi(θs), and sample an item ws,k ∼ Multi(ϕzs,k) where ws,k

indicates item k being retrieved from source s. Given the sourcing policy x ∈ RS , we execute the
above sampling xs times for each source s as described at lines 1 in Algorithm 2, and then compute
the quality score given a list of retrieved items.

The overall content relevance score is the sum of the content relevance scores after de-duplicating
the retrieved content. The infrastructure load is a sum of products of a number of retrievals and the
cost per fetched item cs for each source, in which cs varies across sources and positively correlates
with the source relevance score. This setup is based on the real-world observation that sources
providing higher relevance content are generally more computationally expensive. The objective in
the benchmark experiments is a weighted sum of overall content relevance and negative infrastructure
load. In the experiment, we repeat this simulation (at line 10) 1000 times for a given policy and
compute the mean and standard error of the objective values, which we refer to as the quality score in
the main text.

S5.2 Additional Experiments

We evaluate EI-IR, EI-ER and SEBO on two synthetic and three real-world problems. We show the
results using L0 regularization for most problems except for the last problem, where the group lasso
is used to demonstrate that the methods can be applied to recover different forms of sparsity, such
as group sparsity. In addition, we provide an ablation study that demonstrates the importance of
using L0 regularization by comparing it to L1 regularization. We show in an ablation study that the
homotopy continuation approach from Section 2 is crucial for effective L0 regularization.

Experimental setup: Our experiments all have high-dimensional parameter spaces, so we use the
SAAS model when optimizing with ER, IR, and SEBO. We compare performance to quasi-random
search (Sobol), BO with a standard ARD Matérn-5/2 kernel and the EI acquisition function (GPEI),
and SAASBO. For the SAAS model, we use the same hyperperameters as suggested by Eriksson
and Jankowiak [12] and use the No-U-Turn (NUTS) sampler for model inference. The acquisition
function is computed by averaging over the MCMC samples. We always scale the domain to be the
unit hypercube [0, 1]D and standardize the objective to have mean 0 and variance 1 before fitting
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Algorithm 2 Recsys Simulation
1: procedure ITEM-RETRIEVAL(xs)
2: n⃗s ←

−→
0 ∈ RK ▷ number of retrievals for K distinct items

3: for n← 1 to xs do ▷ retrieve xs items
4: Sample a topic for an item k in source s i.e. zs,k ∼ Multi(θs)
5: Sample an item ws,k ∼ Multi(ϕzs,k)
6: n⃗s ← n⃗s + w⃗s

7: end for
8: return n⃗s

9: end procedure

10: procedure SOURCING(x)
11: n⃗← −→0 ∈ RK ▷ number of retrievals for K distinct items
12: for s← 1 to S do ▷ retrieve items for each source s
13: n⃗s ← ITEM-RETRIEVAL(xs)
14: n⃗← {n⃗+ n⃗s}
15: end for
16: Compute relevance score RS =

∑K
k=1 1(nk > 0)mk and infrastructure cost C =

∑S
s=1 cs×

xs

17: return quality score Q = RS− 0.6× C
18: end procedure

the GP model. For the homotopy continuation approach described in Sec. 2, we discretize the range
of a to use 30 values of starting from astart = 10−0.5, see the appendix for more details. Fig. S11
shows that SEBO is not sensitive to the choice of astart. We use a deterministic model for sparsity
when using it as an objective. The figures show the mean results across replications (10 replications
for the adaptive bitrate simulation (ABR) problem and 20 for all other experiments), and the error
bars correspond to 2 standard errors. All experiments were run on a Tesla V100 SXM2 GPU (16GB
RAM). Methods, benchmarks, code for replicating this work will be available upon publication.

Evaluation plots: We evaluate optimization performance in terms of the trade-off between the
objective and sparsity. To compare the trade-offs, we show the resulting Pareto frontier by treating
sparsity as a separate objective, e.g., Fig. S2 (right) and Fig. S3. In particular, for each level of
sparsity (active dimensions), we will plot the best value found using at most that number of non-sparse
components. We also show hypervolume traces in the Appendix S5.3. In cases where a method is
unable to find at least one configuration for a given level of sparsity we assign replications an imputed
function value corresponding to the worst label shown on the y-axis. In addition, for the synthetic
problems where the true active dimensions and the optima are known, we plot simple regret for a
fixed level of sparsity, e.g., in Fig. S2 (left, middle).

Synthetic functions: We first consider two synthetic problems where the level of sparsity is known.
We use the Branin and Hartmann6 functions embedded into a 50D space where 0 is considered sparse.
We used 50 trials (evaluations) with 8 quasi-random initial points for Branin and 100 trials with 20
quasi-random initial points for Hartmann6. The results are shown in Fig. S2. The two leftmost plots
show the optimization results by evaluating the objective only on observed points whose number of
active (i.e., non-zero) parameters was less than or equal to the true effective dimension (2 for Branin
and 6 for Hartmann6). We observe that SEBO-L0 performed the best, followed by IR with λ = 0.001.
This suggests IR may perform competitively if the regularization coefficient is chosen optimally.
On the other hand, ER performed worse than SEBO and IR. Finally, methods with non-regularized
acquisition functions (Sobol, GPEI, and SAASBO) failed to identify sparse configurations. Fig. S2
(right) visualizes the trade-off between the objective and sparsity, in which SEBO-L0 yielded the best
sparsity trade-offs.

Ranking sourcing system simulation: The sourcing component of a recommendation system is
responsible for retrieving a collection of items that are sent to the ranking algorithm for scoring.
Items are retrieved from multiple sources, for instance that may represent different aspects of the
user interest taxonomy [40]. Querying for more items can potentially improve the quality of the
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Figure S2: (Left) Simple regret for Branin embedded into a 50D space, considering only observations
with at most 2 active (non-sparse) parameters. SEBO-L0 performed the best followed by IR with
λ = 0.001. (Middle) SEBO-L0 and IR with λ = 0.001 performed the best for the Hartmann6 function
embedded into a 50D space when considering only observations with at most 6 active parameters.
(Right) The objective-sparsity trade-off after all 100 iterations on the Hartmann6 problem. Shown is
the Pareto frontier between sparsity and simple regret after the evaluation budget has been exhausted.
SEBO-L0 is able to explore the trade-offs and is able to discover sparse configurations with fewer
than 6 active parameters that are not found by the other methods.

recommendation system, but comes at the cost of increasing the infrastructure load. In addition, each
source may require individual maintenance; thus, deprecating poor sources could reduce technical
debt and maintenance costs of an entire recommendation system [30]. Our goal is thus to identify
a retrieval policy that uses a minimal number of sources while still maximizing the ranking quality
score, measured by a function of content relevance and infrastructure load.

We developed a simulation of a recommender sourcing system that simulates the quality and infras-
tructure load of recommendations produced by a particular sourcing policy. The sourcing system is
modeled as a topic model, where each source has a different distribution over topics, and topics have
different levels of relevance to the user. When two sources are (topically) similar to one another, they
may obtain duplicate items, which will not improve recommendation quality.

We consider a 25-dimensional retrieval policy in which each parameter specifies the number of items
retrieved from a particular source. Our desired sparsity is to set parameters to 0, i.e., turning off the
source. See Sec. S5.1 for more details. We used 8 initial points and ran 100 trials for all the methods.
Fig. S3 (Left) shows that SEBO-L0 performed the best in optimizing the ranking quality score under
different sparsity levels. Sobol and GPEI could not find sparse policies and obtained worse quality
scores even with 25 active parameters. IR and SAASBO performed similarly, and ER with the larger
regularization parameter λ = 0.01 achieved higher quality score with less than 10 active dimensions.

SVM Machine learning hyperparameter tuning: We consider the problem of doing joint feature
selection and hyperparameter tuning for a support vector machine (SVM). We tuned the C, ε, and γ
hyperparameters of the SVM, jointly with separate scale factors in the continuous range [0, 1] for
each feature. We used 100 features from the CT slice UCI dataset [10] and the goal was to minimize
the RMSE on the test set. This produces a 103D optimization problem where we shrink towards
a scale factor of 0, as it effectively removes the feature from the dataset. We took C ∈ [0.01, 1.0],
ε ∈ [0.01, 1.0], and γ ∈ [0.001, 0.1], where the center of each interval was considered sparse as this
is the default value in Sklearn. We optimized C, ε, γ on a log-scale, and initialized all methods with
20 points and ran 100 evaluations. Fig. S3 (Middle) shows that SEBO-L0 was best able to explore
the trade-offs between sparsity and (negative) RMSE.

Adaptive bitrate simulation: Video streaming and real-time conferencing systems use adaptive
bitrate (ABR) algorithms to balance video quality and uninterrupted playback. The goal is to
maximize the quality of experience (QoE). The optimal policy for a particular ABR controller may
depend on the network, for instance a stream with large fluctuations in bandwidth will benefit from
different ABR parameters than a stream with stable bandwidth. This motivates the use of a contextual
policy where ABR parameters are personalized by context variables such as country or network
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Figure S3: Objective-sparsity trade-offs after 100 (75 for ABR) trials for the three real-world
problems. (Left) Sourcing problem: SEBO-L0 regularization effectively explored all sparsity trade-
offs. (Middle) SVM problem: ER with λ = 0.01 and IR with λ = 0.01 were able to explore parts of
the Pareto frontier, however were dominated by SEBO-L0. (Right) ABR problem: Similar behavior
as in the SVM problem was seen here with a group lasso penalty.

type [16]. Various other systems and infrastructure applications commonly rely on tunable parameters
which can benefit from contextualization.

We suppose that the system has already been optimized with a global non-contextual policy, πglobal,
that is used for all contexts. Our goal here is to use sparse BO to find the contextualized residuals ∆πi

for each individual context i, i.e., πi = πglobal +∆πi. By regularizing the contextualized residuals
∆πi’s using the group lasso (GL) norm [43], we hope to find policies that require minimum alteration
to the global policy πglobal, in which the minimum number of contexts have parameters that deviate
from the global optimum. This adds both simplicity and interpretability to the contextual policy, since
we can interpret the policy by looking at the contextual residuals ∆πi.

Fig. S3 (Right) shows the results of applying our methods to the contextual ABR optimization
problem from Feng et al. [16]. For this problem, we have 12 contexts and 4 parameters for each
context resulting in a 48D optimization problem. We used 75 trials with 8 quasi-random initial
points for all the methods. The group lasso penalty is defined by assigning parameters for each
individual context to be within the same group. We observe that IR with a fixed λ was able to explore
trade-offs at certain sparsity levels and that stronger regularization (larger λ) resulted in finding
configurations that were more sparse. SEBO-GL, on the other hand, automatically and efficiently
explored the trade-off between sparsity and reward at all sparsity levels. All other baselines (Sobol,
GPEI, SAASBO) failed to find any sparse configurations that achieve non-zero reward.

S5.3 Hypervolume trace plots

We evaluate optimization performance by showing the average best obtained hypervolume across
20 replicates, with 95% confidence interval over 100 trials. The results are shown for the sourcing
problem (left), the SVM problem (middle) and the Hartmann6 function embedded into a 50D (right)
in Figure S4. It can be seen that SEBO-L0 (red traces) outperforms all the other methods and
achieved the best hypervolume value over 100 iterations. The IR and ER methods with well selected
regularization parameter values can sometimes achieve competitive results and usually outperform
the methods with non-regularized acquisition functions, e.g. SAASBO.

S5.4 Benchmark with additional HDBO methods

We conduct evaluations of additional high-dimensional BO methods for the Hartmann6 function
embedded in a 50D space, including trust region BO (TuRBO) by [13] and Random Embedding BO
(REMBO) by [39]. The left plot in Figure S5 shows the trade-off between the objective and sparsity
after all 100 iterations. Although SAASBO and TuRBO achieve good non-sparse solutions, they fail
to obtain sparse solutions. REMBO does not obtain better sparse solution than SAASBO. In the right
plot, we show the simple regret considering only observations with at most 35 active (non-sparse)
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Figure S4: Hypervolume benchmark traces. (Left) Sourcing problem.(Middle) SVM problem. (Right)
Hartmann6 function embedded into a 50D. The results are the average best hypervolume (with 95%
confidence interval) obtained over 100 iterations across 20 replications. SEBO-L0, shown in red,
performs the best in all three problems.

parameters. SEBO-L0 outperforms these high-dimensional BO since these methods do not encourage
sparse solutions.
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Figure S5: Results of additional high-dimensional BO methods for the Hartmann6 function embedded
in a 50D space. (Left) The objective-sparsity trade-off after all 100 iterations. SAASBO and TuRBO,
although obtaining competitive objective values with 50 active parameters, do not encourage sparse
solutions. (Right) The simple regret for Hartmann6 function considering only observations with at
most 35 active (non-sparse) parameters.

S6 Ablation Studies

S6.1 Benchmarks with L1 regularization

Our proposed method can work together with different forms of sparsity. Here we show the results
of EI-ER, EI-IR and SEBO using L0 regularization for the Hartmann6 function embedded in a 50D
space. As can been seen in Fig. S6, using L0 leads to significant improvement over L1 for all three
methods.

S6.2 Alation study on using homotopy continuation

We show in Fig. S7 by means of an ablation study the importance of using the homotopy continuation
approach from Section 2 to target L0 sparsity. We focus on SEBO as it consistently outperformed
IR and ER. Using a fixed value of a for the L0 approximation performs poorly, particularly when
a is small, which is due to the acquisition function being zero almost everywhere and thus difficult
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Figure S6: Results for the Hartmann6 function embedded in a 50D space. (Left) L0 regularization
outperforms L1 regularization in exploring the objective-sparsity trade-offs for IR, ER and SEBO.
(Right) L0 regularization obtains better optimization performances considering only observations
with at most 6 active (non-sparse) parameters.

to optimize. On the other hand, a = 1 results in a failure to discover sparse configurations and the
resulting method performs similar to SAASBO (see Fig. S2).
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Figure S7: Ablation study on the Hartmann6 function embedded in a 50D space. (Upper) SEBO-L0

works much better than SEBO-L1 as it directly targets sparsity. Using a fixed value of a performs
poorly, confirming the importance of our homotopy continuation approach. (Lower) Working directly
with L0 regularization works drastically better than L1 regularization for both IR and ER.

S6.3 Ablation study on using SAAS

To illustrate the importance of using the SAAS model, we compare to using EI-IR-L1 with a standard
GP in Fig. S8. We observe that EI-IR-L1 with a standard GP fails to discover non-trivial sparse
configurations for all values of λ. This confirms that sparsity in the GP model is crucial for finding
sparse configurations. This can also be observed by comparing performances of SAASBO and GPEI
in Fig. S2 where there is a huge gap in terms of the best function value optimized even when looking
at dense points (active dimensions = 50).
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Figure S8: Results for the Hartmann6 function embedded in a 50D space. EI-IR-L1 using the SAAS
model significantly outperforms EI-IR-L1 using a standard GP.
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Figure S9: Results of EI-IR with different λ values for Hartmann6 function embedded into a 50D
space. (Left) The objective-sparsity trade-off after all 100 iterations. (Right) The simple regret
considering only observations with at most 6 active (non-sparse) parameters.
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Figure S10: Results of EI-ER with different λ values for Hartmann6 function embedded into a 50D
space. (Left) The objective-sparsity trade-off after all 100 iterations. (Right) The simple regret
considering only observations with at most 6 active (non-sparse) parameters.
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S7 Sensitivity Analysis

S7.1 Sensitivity analysis of regularization parameter λ

We conduct a sensitivity analysis of regularization parameter λ used by IR and ER by sweeping
different values of λ on the 50D Hartmann6 benchmark. The results are given in Fig. S9 and Fig. S10.
We observe that we are able to control the sparsity level by appropriately choosing λ. In general,
larger λ implies stronger regularization and results in finding configurations with a higher level of
sparsity. When λ increases above a certain point, the regularization becomes too strong and fails to
help find high-quality sparse points.

By comparing results of IR and ER for different λ values, we note that IR is able to achieve effective
optimization performance over a wider range of λ’s while ER is more sensitive to the value of λ.
This validates the discussion about ER in Section S2.1 that ER is not as effective as IR due to ER’s
inability to select a new sparse point that improves over sparse points from previous iterates if the
new sparse point does not improve on the dense points that are already observed.

S7.2 Sensitivity analysis of astart in SEBO-L0 optimization
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Figure S11: Ablation study of astart in SEBO-L0. (Left). Results of Branin (d = 2, D = 50).
(Right). Results of Sourcing (D = 25). There is no statistically significant difference between using
different astart except for the extremely small astart (= 10−2). This shows the robustness of having
a default astart for optimizing SEBO-L0 acquisition function.

The value of astart is set to be 10−0.5 for all the experiments. To better understand the robustness of
this choice we conducted an ablation study on the Branin(d = 2, D = 50) and Sourcing (D = 25)
problems considered in Section 3. The results in Figure S11 show that there is no statistically
significant difference between using 10−1, 10−0.5, 100 and 101 as the value of astart. However, using
a value of 10−2 leads to a clear drop in performance as this starting value is too small to optimize the
acquisition function.

S8 Interpretation of Sparse Solutions

We examine what active dimensions are selected in the recommender sourcing system problem to
understand the obtained sparse solutions. For SEBO-L0 results across 20 replications, we obtain the
optimal 25-dimensional retrieval policy and also compute the average of retrievals per source at each
sparsity level. For each source, we compute a source quality scores based on the simulation setup
stated in S5.1. Each source contains a mixture over a set of topics with source relevance score being
qs and the infrastructure cost per fetched item being cs. With this, we define and compute the source
quality score as qs − 4 × cs. Note the score is computed for each source in order to interpret the
obtained solutions and differ from the quality score used in the optimization.

In Figure S12, the left heatmap visualizes the optimal policy at different sparsity levels across
20 replications and the middle one visualizes the average retrieval policy values. Each column
corresponds to one source and is sorted based on source quality score in an ascending order (from left
to right); each row represents the sparsity level (number of active dimensions). The color indicates
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the parameter values. As it can be seen, sources with low quality scores are turned off (zero query)
and sources with higher scores have higher number of retrievals even with smaller active dimensions.
This indicates that the sparse policy obtained from SEBO identifies the most effective sources at each
sparsity level. The right plot in Figure S12 shows the relationship between number of items retrieved
from each source and source quality score with 5 active parameters. Each dot represents a source.
The curve is a fitted spline to visualize the relationship. From both plots we can see that more items
are retrieved from higher quality sources, while the number of items from lower quality sources are
driven to zero.
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Figure S12: (Left). The heatmap of optimal retrieval policy at different sparsity levels. (Mid) The
heatmap of average retrieval policy values at different sparsity levels. (Right) The scatter plot between
average retrieval policy values with 5 active parameters and source quality score. We can see that
more items are retrieved from higher quality sources, while the number of items from lower quality
sources are driven to zero to achieve sparsity.

S9 Code and Implementations

The GPEI, SAASBO and EHVI used in SEBO were implemented using BoTorch, a framework
for BO in PyTorch [2] and are available in Ax https://github.com/facebook/Ax. The code
is licensed under the MIT License. The SVM hyperparameter tuning experiment uses the SVM
implementation in Sklearn and the CT slice dataset in the UCI machine learning repository [10].
The Adaptive bitrate simulation experiment is available in the Contextual BO open source code
https://github.com/facebookresearch/ContextualBO, licensed under the MIT License.
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