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Abstract

Paleoclimatology—the study of past climate—is relevant beyond climate science
itself, such as in archaeology and anthropology for understanding past human
dispersal. Information about the Earth’s paleoclimate comes from simulations of
physical and biogeochemical processes and from proxy records found in naturally
occurring archives. Climate-field reconstructions (CFRs) combine these data into
a statistical spatial or spatiotemporal model. To date, there exists no consensus
spatiotemporal paleoclimate model that is continuous in space and time, produces
predictions with uncertainty, and can include data from various sources. A Gaus-
sian process (GP) model would have these desired properties; however, GPs scale
unfavorably with data of the magnitude typical for building CFRs. We propose to
build on recent advances in sparse spatiotemporal GPs that reduce the computa-
tional burden by combining variational methods based on inducing variables with
the state-space formulation of GPs. We successfully employ such a doubly sparse
GP to construct a probabilistic model of European paleoclimate from the Last
Glacial Maximum (LGM) to the mid-Holocene (MH) that synthesizes paleoclimate
simulations and fossilized pollen proxy data.

1 Introduction

Paleoclimate reconstructions are important for understanding climate processes and variability but
are also valuable to other scientific domains such as archaeology or paleoecology. For example, past
climate variability has been a driver for human migration, adaption, and cultural innovation [1, 2,
3]. For reconstructing the climate of the past, there are two main sources of information. The first
source is the known dynamics of the climate system encoded as a climate model. Paleoclimate states
are generated from these models through numerical simulations under reconstructed or theorized
boundary conditions called forcings. The simulation outputs are typically represented as a spatial
grid of values of climate variables like mean annual temperature or total annual precipitation. Some
simulations estimate climate variables at one or a few relevant time slices, while others do so at
regular intervals (Fig. B.1). The second source of information is proxy data from geolocated natural
archives that contain information about the time of their deposition, where the proxy data informs the
corresponding climate state at that time (Fig. B.1). Such archives include ice cores, mineral deposits
in caves, and lake sediment cores. Fossilized pollen grains, found within different types of archives,
are the most abundant terrestrial proxy due in part to their comparatively high durability. These pollen
grains are classified into taxonomic groups and compared to modern species distributions. Relating
the modern taxa to modern climate allows one to generate paleoclimate reconstructions with existing
techniques [4, 5, 6]. Because pollen are found at archaeological sites worldwide, they are particularly
compelling for studying the environmental context of human evolution.
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Climate field reconstructions (CFRs) infer spatial or spatiotemporal fields of climate variables with
statistical models. Most Bayesian CFRs consider only the more data-rich recent past, i.e. the last two
thousand years (2 ka), and most of these use information only from proxies and not from simulations
[7, 8]. Purely spatial probabilistic reconstructions of paleoclimate from simulations and pollen have
been built by Weitzel et al. [9, 10]. Osman et al. [11] used ensemble Kalman filtering to model
surface temperature based on multiple simulation time slices from one climate model and sea surface
temperature proxy data from the LGM to the present; this study did not explicitly model temporal
autocorrelations. To our knowledge, the only fully Bayesian spatiotemporal model for CFR of
paleoclimate has been presented by Weitzel [12] but applied only to synthetic data. Their parametric
hierarchical model has O(10%) parameters, which makes inference challenging.

Currently there is no consensus CFR available that is global, spatiotemporal, probabilistic, uses the
majority of available proxy data and simulations, and can be queried at an arbitrary location and time.
Our goal is ultimately to construct such a model and make it available to the research community.
As a first step, we present here a spatiotemporal Gaussian process model of mean annual temperature
across Europe from the Last Glacial Maximum (LGM; ~ 21 ka) to the mid-Holocene (MH; ~ 6 ka)
based on simulations from various paleoclimate models and reconstructions from fossilized pollen (cf.
Section 3). Inference on such a large dataset (N > 6-10°, cf. Section 2) is made tractable using a com-
bination of inducing variables and a Markovian structure in the temporal domain [13, 14], using doubly
sparse GPs (cf. Section 4). With only 100 spatial and six temporal inducing points, our model inter-
polates well in space and time between data points and comes with calibrated uncertainty estimates.

2 Dataset

In this work we focus on mean annual temperature as the climate variable of interest using fossilized
pollen grains as proxy data. We constrain the spatial domain to the European continent during the
period from LGM to MH. All data is from publicly available databases.

Pollen data We use 41,986 site-specific reconstructions of mean annual temperature from fossilized
pollen collected at 826 sites and 1,607 time slices from the LegacyClimate 1.0 database [15].

Simulation data We use a total of ten models with different output coverage in space and time.
Three models have been simulated only at MH [16, 17, 18], while five are available at both LGM
and MH but no other time slices [19, 20, 21, 22, 23]. All of the above have a spatial grid spacing of
10 arcminutes (< 15 km) and were downloaded from WorldClim 1.4 [24]. Two models have been
simulated at time slices spaced by 1,000 years ranging from LGM to MH and have a grid spacing of
30 arcminutes (< 46 km) [25, 26].

Simulations and pollen-derived reconstructions provide a total of N = 661,028 data points. We
preprocessed the data by using radial basis functions to spatially interpolate within each lower-
resolution MH simulation; these interpolations were then averaged to form a function m(z). This
function m(x) was then subtracted from all data; this smoothed out the steep gradients in climate
variables around mountain ranges and the coastline. Thus the data we use during modeling is the
deviation from this empirical model.

3 Description of probabilistic model

Prior Let C(z,t) be a climate variable of interest at coordinates = (longitude, latitude) and

time ¢. We adopt the following zero-mean, factorized GP prior for C(z,t) == C(z,t) — m(z):
C(x,t) ~ GP(0, ky(z, 2" ) ke (£, 1)),

where k, is a Matérn-3> spatial kernel with different latitudinal and longitudinal length scales, and k;

is a Matérn-!/2 temporal kernel corresponding to an Ornstein-Uhlenbeck process, whose state-space
representation has dimension d = 1.

Likelihood Let Y, , be either a site-specific reconstruction or a simulated value at site s with
coordinates z, and time ¢,. Furthermore, let Y, , = Y, , — m(x;). We approximate for now that all
data are independently and identically (i.i.d.) normally distributed
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Figure 1: Predictive error of model C(x,t). (a) Results of validation when fitting the model to a
single multi-time step simulation [26]. For each model fit, a single time slice was held out from the
simulation during training and compared with the corresponding posterior predictive (PP) means at
the same time slice and coordinates. Error is computed as (PP mean — data). Shown are the central
intervals of the error distributions containing 80%, 60%, 40%, and 20% of values, as well as the
median. (b) Kernel density estimate (KDE) of normalized posterior predictive (PP) error distribution.
Error is computed as (PP mean — data) / (PP std). The KDE is computed using ArviZ [29].

The same o is used for all simulations as well as the pollen-based reconstructions.

This model yields an exact GP posterior for C', which allows the resulting posterior distribution of
C' to be queried at any spatiotemporal point (x, t). However, the large number of data points N
makes the O(NN?3) inversion of the kernel Gram matrix intractable. Therefore, we turn to a sparse GP
approximation for inference.

4 Approximate inference

Doubly sparse spatiotemporal Gaussian processes To keep inference computationally feasible,
we use a sparse variational GP approximation that is compatible with the time-series structure of
our model. Such algorithms are known as doubly sparse GP approximations because they combine
two approaches to obtain sparsity: 1) a set of M < N inducing variables and 2) the state-space
representation of Markovian GPs, which allows for linear-time inference using Kalman updates [13].
With a variational distribution on the inducing states that retains the chain structure, the marginal
posterior predictions can be computed efficiently using filtering methods. For spatiotemporal models,
these methods require a kernel that is separable into the product of a spatial kernel and a Markovian
temporal kernel. Among multiple recent algorithmic approaches to sparse Markovian GPs [14]
we choose S2CVI (doubly sparse conjugate-computation variational inference) as implemented in
markovflow [27]. S2CVI defines a variational posterior for C that is optimized using natural gradient
updates and has been reported to be more efficient and numerically stable than alternative approaches
[14]. The time complexity of evaluating the variational objective and its gradient using S?CVI is
O((My + Ny)(Md)?), for M, spatial inducing points, M, temporal inducing points, dimension d
of state-space representation of k;, and batch size IV, [14]. This method has not been used previously
for problems of the scale of ours, and no public code exists of applications such as geospatiotemporal
modeling where there is more than one spatial dimension.

Experimental details We trained S2CVI with M, = 100 spatial and M; = 6 temporal inducing
points over 30 epochs with a minibatch size of N, = 1,000. At each iteration, the parameters of
the variational posterior are first updated using natural gradients, and then all hyperparameters are
updated using Adam [28]. The coordinates of the spatial inducing points, which are constrained to
stay within the spatial domain of the data, are treated as hyperparameters. All predictions from the
variational posterior for C were shifted by m(z) to obtain the approximate posterior for C, and these
are used in all subsequent analyses.

5 Results

Validation We validated the general approach by performing “leave-one-time-slice-out” inference
with a single multi-time slice simulation [26] as data (Fig. 1a). The average posterior predictive error
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Figure 2: Comparison of mean annual temperature from one of the regularly temporally spaced
simulations [26] (Y; fop) with the mean of the variational posterior approximation (C(x, t); bottom)
at several time slices. At 20.5 ka, there is no simulated data available, so only the model’s prediction
is shown. The grey area in the simulation indicates grid points that are masked due to presence of
ocean or an ice sheet. Because no observations are available in these regions, the model’s predictions
there are not expected to be reliable.

comparing each posterior predictive mean to the corresponding measurement in the held-out time
slice across all time slices is 0.05 °C with a 95% central posterior predictive interval of (-1.86 °C,
2.24 °C). The mean absolute posterior predictive error is 0.69 °C.

Inference Training on the entire dataset took 36 hours on an NVIDIA V100 GPU. 98.9% of all
data fell within three standard deviations of the mean of the posterior predictive distribution (99.1%
for simulations and 95.9% for pollen; Fig. 1b). The mean of the variational posterior both spatially
and temporally interpolates between the simulations (Fig. 2).

6 Outlook

We are working on several immediate improvements to the model. Instead of using a weighted
interpolation of simulations as an empirical model to be subtracted from data, we will use a spatial
interpolation of measurements from the early 1900s. To allow capturing remaining large-scale spatial
and temporal trends, we will further introduce a non-zero parametric prior mean function to the
prior on C'. We will also incorporate prior beliefs about the values of the fitted parameters by setting
weakly informative priors. As a step toward extending the model to accommodate different data
sources, we will use separate likelihood functions for proxy data and simulations. In the medium
term, we would like to drop the i.i.d. assumption for simulations by including a sparse covariance
matrix to account for the spatial covariance of the simulated data. Moreover, climate variables often
co-vary, so we plan to jointly model mean annual temperature and total annual precipitation using
a multi-output GP. Dating of proxies has its own uncertainty, which is especially relevant for pollen
and is currently unaccounted for in our model; another extension would be to include this uncertainty
in the variational objective [30, 31]. In the future we will expand the geographical extent of the
model to provide predictions of climate with global land coverage between LGM and MH.

7 Conclusion

Paleoclimate modeling lacks consensus spatiotemporal models that combine simulations and proxies
and adequately report uncertainty estimates. Progress in this area is hindered by the computational
expense of training such models. We demonstrate that state-of-the-art sparse GP algorithms enable
spatiotemporal modeling in realistic applications in the climate sciences where large datasets of
different modalities are common. While the result already possesses the desired properties for a
consensus model, we describe model improvements that will enhance its usefulness for geosciences
communities. Our paleoclimate synthesis will ultimately be made available as a free, queryable web
app to facilitate discovery in applied fields such as archaeology and paleoecology.
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A Results of hyperparameter optimization

The spatial kernel of the GP prior k, has two length scales in units of degrees: a longitudinal one ¢},
and a latitudinal one ¢,;. After optimization, these took the values £, = 19.6° and ¢},; = 13.2°.
The temporal kernel k; has a single length scale ¢;, which was optimized to £, = 9, 900 years. The
global standard deviation of the product kernel k£ was optimized to 2.9 °C. The standard deviation o
of the likelihood was optimized to a value of 1.6°C. The optimized spatial inducing point locations
are shown in Fig. A.1.

21 ka 20.5 ka 13 ka 6 ka °C
700 e, Tt Tt et T e AT T Y P s .
e o T . < . 0 PR IE g = 2
£ 60 - S 5 o
=1 . r
o 0 t e 3 0
2 pe . 2 5 . s o
g 50 % . ' T e e Jhed Ore ' Jhed e N ]
A R RPN e Ve e SRR s v I_ZO
40 » . -. . . -. . Y *e .. . 9 *e n. .
o R B : c- LI L s L L o LA B
°C
70 — — — — 5
5" 8 . . . )
60
s 3
=
i) : b b :
o - - - - - - = -
) b
1 S— 1 —— T S— y | —— o
0 20 40 0 20 40 0 20 40 0 20 40

Figure A.1: Comparison of mean annual temperature from one of the regularly temporally spaced
simulations [26] (top) with the standard deviation of the variational posterior approximation (bottom).
The black dots in the top row are the optimized locations of the spatial inducing points, which are
shared across all time slices.

B Overview of data and consensus model

Multiple spatiotemporally gridded simulations are combined with reconstructions from fossilized
pollen proxies to construct a consensus model (Fig. B.1). While the data are discrete in space and
time, the consensus model is continuous in both space and time, and at any spatiotemporal point, the
marginal posterior distribution of temperature can be queried.
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Figure B.1: Overview of data and consensus model. All colors represent temperature. For proxy-
based reconstructions (botfom), each marker represents a reconstruction at a single spatiotemporal
point. Multiple reconstructions at different points in time within a single archive appear stacked.
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