
Provably Reliable Large-Scale Sampling from 
Gaussian Processes

Motivation
Usually, approximate GP methods are evaluated on a toy synthetic dataset 
at small scale (e.g., 𝑛 ≈ 𝒪(10!)) and a limited set of real benchmark-
datasets. We believe this leaves a gap in the analysis; careful assessment 
of performance at scale on data adhering exactly to a GP model.

Unfortunately, (naïvely) generating a sample of size 𝑛 from a GP model is a 
task of complexity 𝒪 𝑛! . Since we want to do this at scale, this is clearly 
infeasible; as a result, we wish to find a way to generate approximate
samples that are extremely close in some sense to “real” samples. 

To empirically test our results, we ran 1000 repeat experiments generating 
samples using RFF and CIQ of different sizes, with varying hyperparameters 
and measured how often a Cràmer von Mises test rejected the null 
hypothesis (that the data came from an 𝒩(0, 𝐼") after applying an exact 
whitening transformation) as a function of the fidelity parameters 𝐷, 𝐽.

Definition (𝝐-indistinguishable). 𝑃# and 𝑃$ are 𝜖-indistinguishable if the 

optimal Bayesian decision process (see [5]) has Pr(error) ≥ $
%
− 𝜖.

Lemma (𝝐-indistinguishable). 𝑃# and 𝑃$ are 𝜖-indistinguishable if 
𝒯𝒱 𝑃#, 𝑃$ ≤ 2𝜖. (TV = Total variation distance).

Contour Integral Quadrature (CIQ)

Random Fourier Features (RFF)
Random Fourier Features were introduced as a method of approximating 
kernels at large scales in Support Vector Machines and Kernel Ridge 
Regression problems in [2]. One of the appealing features of the RFF 
approximation for sampling from a GP is the fact that we don't need to form 
the full Gram matrix in order to generate samples.

To construct the full approximate matrix, we form the product 𝑍𝑍& of 𝑍 ∈
ℝ"×( matrices. To generate samples, we need only construct a single 𝑍
matrix and simply transform an 𝑤 ∼ 𝒩(0, 𝐼() variable to get @𝑓 = 𝑍𝑤. This 
shows that we have a method of complexity 𝒪(𝑛𝐷) to produce an 
approximate sample of size 𝑛.

Conclusion
We show how to generate approximate samples from any Gaussian 
Process that, with high probability, cannot be distinguished from a draw 
from the assumed GP. Bounds on time and space complexity are for the 
methods considered are given in the table below.

Table 1: Time and space complexity of competing methods of generating draws from a GP. P=with preconditioning. 
Methods with superscript * represent possibly loose upper bounds we expect can be tightened, particularly in the case of  

RFF.
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“Indistinguishable’’ distributions

Method Time Space
Cholesky 𝒪(𝑛!) 𝒪(𝑛%)
RFF 𝒪 𝑛!log 𝑛 ∗ 𝒪(𝑛)
CIQ 𝒪 𝑛 *+ %log 𝑛

∗ 𝒪(𝑛log 𝑛)

PCIQ 𝒪 𝑛%.!-+log 𝑛 ∗ 𝒪(𝑛log 𝑛)

Lemma (RFF). To generate a sample of size 𝑛 whose marginal distribution 
differs from the true marginal distribution from a given GP by a total 
variation distance (𝒯𝒱) of at most 𝜖, with probability 1 − 𝛿 it is sufficient to 

use 𝐷 RFFs, where 𝐷 ≥ 8log "
.

"!

/0!1"
# for some 𝛿 > 0.

Lemma (CIQ). To generate a sample of size 𝑛 satisfying the requirements 
outlined in the RFF lemma, it is sufficient to use 𝑄 quadrature points and 𝐽

Lanczos iterations, where 𝑄 ≥ 𝒪 log I" 21"
! − log 𝛿3 and 

𝐽 ≥ J𝒪 "
21"

log "
1" 01" $424.$

with 0 < 𝛿3 < 𝜖𝜎5 1 − 𝜂.

Lemma (PCIQ). To generate a size 𝑛 sample satisfying the same 
requirements as before, making use of a rank-𝑘 Nyström preconditioner, 

𝐽 ≥ 1 + 6%&'"
(
)

21"

+
7
log 𝑛 − log 𝜖𝜎5 1 − 𝜂 − 𝛿3 + 𝐶8 Lanczos iterations will 

be sufficient, for some constant 𝐶8 > 0. See [5] for further refinements.

Figure 1. Rejection rate convergence with # RFFs D. Significance level is shown by a blue dashed line and the 95% CI  
(for converged results) is in green. The range of results obtained from running a Cholesky benchmark is shown by the 
grey bar. D is rescaled on the x-axis by the upper bound derived above. Vertical black dashed line is at 1.0 indicating 

where we reach that bound. *𝐷 𝑛 = 𝑛! log 𝑛.
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Figure 2. Rejection rate convergence with # Lanczos iterations J. Significance level is in blue and the 95% CI  (for 
converged results) is in green. J is rescaled on the x-axis by the upper bound derived above. The black dashed line 

indicates this bound. ̅𝐽 𝑛 = 𝑛 log 𝑛.
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Figure 3. Rejection rate convergence with # Lanczos iterations J. Significance level is in blue and the 95% CI  (for 
converged results) is in green. J is rescaled on the x-axis by the upper bound derived above. The black dashed line 

indicates this bound. ̅𝐽 𝑛 = 𝑛"/$ log 𝑛.

CIQ is a quadrature algorithm designed to exploit the Cauchy integral 
formula to approximate functions of square matrices. The most pertinent 
example in the literature can be found in [1], which derives efficient 
implementations for matrix-vector products of the form 𝐴±$/%𝑢.

Since 𝐽 relies on the condition number of 𝐾 we expect a preconditioning to 
improve the efficiency of the algorithm. We call this version PCIQ.
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