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Motivation

Usually, approximate GP methods are evaluated on a toy synthetic dataset
at small scale (e.g., n = 0(10%)) and a limited set of real benchmark-
datasets. We believe this leaves a gap in the analysis; careful assessment
of performance at scale on data adhering exactly to a GP model.

Unfortunately, (naively) generating a sample of size n from a GP model is a
task of complexity 0(n3). Since we want to do this at scale, this is clearly
infeasible; as a result, we wish to find a way to generate approximate
samples that are extremely close in some sense to “real” samples.

“Indistinguishable™ distributions

Definition (e-indistinguishable). P, and P; are e-indistinguishable if the
optimal Bayesian decision process (see [5]) has Pr(error) > % — €.

Lemma (e-indistinguishable). P, and P, are e-indistinguishable if
TV(Py, P;) < 2e. (TV = Total variation distance).

Experiments

To empirically test our results, we ran 1000 repeat experiments generating
samples using RFF and CIQ of different sizes, with varying hyperparameters
and measured how often a Cramer von Mises test rejected the null
hypothesis (that the data came from an N (0, I,,) after applying an exact
whitening transformation) as a function of the fidelity parameters D, J.

Random Fourier Features (RFF)

Random Fourier Features were introduced as a method of approximating
kernels at large scales in Support Vector Machines and Kernel Ridge
Regression problems in [2]. One of the appealing features of the RFF
approximation for sampling from a GP is the fact that we don't need to form
the full Gram matrix in order to generate samples.

To construct the full approximate matrix, we form the product ZZ" of Z €
R™*P matrices. To generate samples, we need only construct a single Z
matrix and simply transform an w ~ N (0, I,) variable to get f = Zw. This
shows that we have a method of complexity O(nD) to produce an
approximate sample of size n.

Gaussian Processes
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Figure 1. Rejection rate convergence with # RFFs D. Significance level is shown by a blue dashed line and the 95% CI
(for converged results) is in green. The range of results obtained from running a Cholesky benchmark is shown by the

grey bar. D is rescaled on the x-axis by the upper bound derived above. Vertical black dashed line is at 1.0 indicating
where we reach that bound. D(n) = n? logn.

Contour Integral Quadrature (CIlQ)

ClQ is a quadrature algorithm designed to exploit the Cauchy integral
formula to approximate functions of square matrices. The most pertinent
example in the literature can be found in [1], which derives efficient
implementations for matrix-vector products of the form A*1/?u.

Lemma (CIQ). To generate a sample of size n satisfying the requirements
outlined in the RFF lemma, it is sufficient to use Q quadrature points and J

Lanczos iterations, where Q = O (log(n/nag)(— log 6Q)> and

Jn

> ~ n . — .
] =0 (\/ﬁaglog ag(eagM—SQ)) with 0 < 6y < €0z4/1—1

Lemma (RFF). To generate a sample of size n whose marginal distribution
differs from the true marginal distribution from a given GP by a total
variation distance (7V) of at most €, with probability 1 — ¢ it is sufficient to
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Figure 2. Rejection rate convergence with # Lanczos iterations J. Significance level is in blue and the 95% CI (for

converged results) is in green. J is rescaled on the x-axis by the upper bound derived above. The black dashed line
indicates this bound. J(n) = v/nlogn.

Since J relies on the condition number of K we expect a preconditioning to
improve the efficiency of the algorithm. We call this version PCIQ.
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Figure 3. Rejection rate convergence with # Lanczos iterations J. Significance level is in blue and the 95% CI (for
converged results) is in green. J is rescaled on the x-axis by the upper bound derived above. The black dashed line
indicates this bound. J(n) = n3/8logn.

Lemma (PCIQ). To generate a size n sample satisfying the same
requirements as before, making use of a rank-k Nystrom preconditioner,

3

\//1]( n8 (5 p . . :
J>1+ \/ﬁ;;g (Zlogn —log(ege\/1—n—6y) + C ) Lanczos iterations will

be sufficient, for some constant C’' > 0. See [5] for further refinements.

Conclusion

We show how to generate approximate samples from any Gaussian
Process that, with high probability, cannot be distinguished from a draw
from the assumed GP. Bounds on time and space complexity are for the
methods considered are given in the table below.

Method Time Space
Cholesky 0(n3) 0(n?)
RFF O(n3logn)* O(n)
CiQ 0 (ns /zlog n) O(nlogn)
PCIQ 0(n?37°logn)* O(nlog n)

Table 1: Time and space complexity of competing methods of generating draws from a GP. P=with preconditioning.
Methods with superscript * represent possibly loose upper bounds we expect can be tightened, particularly in the case of
RFF.
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