
Provably Reliable Large-Scale Sampling from
Gaussian Processes

Motivation
Usually, approximate GP methods are evaluated on a toy synthetic dataset
at small scale (e.g., 𝑛 ≈ 𝒪(10!)) and a limited set of real benchmark-
datasets. We believe this leaves a gap in the analysis; careful assessment
of performance at scale on data adhering exactly to a GP model.

Unfortunately, (naïvely) generating a sample of size 𝑛 from a GP model is a
task of complexity 𝒪 𝑛! . Since we want to do this at scale, this is clearly
infeasible; as a result, we wish to find a way to generate approximate
samples that are extremely close in some sense to “real” samples.

To empirically test our results, we ran 1000 repeat experiments generating
samples using RFF and CIQ of different sizes, with varying hyperparameters
and measured how often a Cràmer von Mises test rejected the null
hypothesis (that the data came from an 𝒩(0, 𝐼") after applying an exact
whitening transformation) as a function of the fidelity parameters 𝐷, 𝐽.

Definition (𝝐-indistinguishable). 𝑃# and 𝑃$ are 𝜖-indistinguishable if the

optimal Bayesian decision process (see [5]) has Pr(error) ≥ $
%
− 𝜖.

Lemma (𝝐-indistinguishable). 𝑃# and 𝑃$ are 𝜖-indistinguishable if
𝒯𝒱 𝑃#, 𝑃$ ≤ 2𝜖. (TV = Total variation distance).

Contour Integral Quadrature (CIQ)

Random Fourier Features (RFF)
Random Fourier Features were introduced as a method of approximating
kernels at large scales in Support Vector Machines and Kernel Ridge
Regression problems in [2]. One of the appealing features of the RFF
approximation for sampling from a GP is the fact that we don't need to form
the full Gram matrix in order to generate samples.

To construct the full approximate matrix, we form the product 𝑍𝑍& of 𝑍 ∈
ℝ"×(matrices. To generate samples, we need only construct a single 𝑍
matrix and simply transform an 𝑤 ∼ 𝒩(0, 𝐼() variable to get @𝑓 = 𝑍𝑤. This
shows that we have a method of complexity 𝒪(𝑛𝐷) to produce an
approximate sample of size 𝑛.

Conclusion
We show how to generate approximate samples from any Gaussian
Process that, with high probability, cannot be distinguished from a draw
from the assumed GP. Bounds on time and space complexity are for the
methods considered are given in the table below.

Table 1: Time and space complexity of competing methods of generating draws from a GP. P=with preconditioning.
Methods with superscript * represent possibly loose upper bounds we expect can be tightened, particularly in the case of

RFF.

References
[1] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. Gardner. Fast matrix square
roots with applications to gaussian processes and Bayesian optimization. Advances in
Neural Information Processing
Systems, 33:22268–22281, 2020.
[2] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.
[3] Danica J. Sutherland and Jeff Schneider. On the error of random fourier features. In
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI’15,
page 862–871 Arlington, Virginia, USA, 2015. AUAI Press.
[4] Mikhail Belkin. Approximation beats concentration? An approximation view on inference
with smooth radial kernels. https://arxiv.org/pdf/1801.03437, 2018.
[5] A. Stephenson, R. Allison and E. Pyzer-Knapp. Provably reliable large-scale sampling
from Gaussian processes. NeurIPS Proceedings 2022.

“Indistinguishable’’ distributions

Method Time Space
Cholesky 𝒪(𝑛!) 𝒪(𝑛%)
RFF 𝒪 𝑛!log 𝑛 ∗ 𝒪(𝑛)
CIQ 𝒪 𝑛 *+ %log 𝑛

∗ 𝒪(𝑛log 𝑛)

PCIQ 𝒪 𝑛%.!-+log 𝑛 ∗ 𝒪(𝑛log 𝑛)

Lemma (RFF). To generate a sample of size 𝑛 whose marginal distribution
differs from the true marginal distribution from a given GP by a total
variation distance (𝒯𝒱) of at most 𝜖, with probability 1 − 𝛿 it is sufficient to

use 𝐷 RFFs, where 𝐷 ≥ 8log "
.

"!

/0!1"
for some 𝛿 > 0.

Lemma (CIQ). To generate a sample of size 𝑛 satisfying the requirements
outlined in the RFF lemma, it is sufficient to use 𝑄 quadrature points and 𝐽

Lanczos iterations, where 𝑄 ≥ 𝒪 log I" 21"
! − log 𝛿3 and

𝐽 ≥ J𝒪 "
21"

log "
1" 01" $424.$

with 0 < 𝛿3 < 𝜖𝜎5 1 − 𝜂.

Lemma (PCIQ). To generate a size 𝑛 sample satisfying the same
requirements as before, making use of a rank-𝑘 Nyström preconditioner,

𝐽 ≥ 1 + 6%&'"
(
)

21"

+
7
log 𝑛 − log 𝜖𝜎5 1 − 𝜂 − 𝛿3 + 𝐶8 Lanczos iterations will

be sufficient, for some constant 𝐶8 > 0. See [5] for further refinements.

Figure 1. Rejection rate convergence with # RFFs D. Significance level is shown by a blue dashed line and the 95% CI
(for converged results) is in green. The range of results obtained from running a Cholesky benchmark is shown by the
grey bar. D is rescaled on the x-axis by the upper bound derived above. Vertical black dashed line is at 1.0 indicating

where we reach that bound. *𝐷 𝑛 = 𝑛! log 𝑛.

10°6 10°4 10°1100

D/D̄(n)

0.1

0.5

1

re
je

ct

l = 0.1

10°6 10°4 10°1100

D/D̄(n)

l = 1.0
RFF

n
256

512

1024

2048

4096

Experiments

10°1 100100 101

J/J̄(n)

0.1

0.5

1

re
je

ct

l = 0.1

10°1 100100 101

J/J̄(n)

l = 1.0
CIQ

n
256

512

1024

2048

4096

Figure 2. Rejection rate convergence with # Lanczos iterations J. Significance level is in blue and the 95% CI (for
converged results) is in green. J is rescaled on the x-axis by the upper bound derived above. The black dashed line

indicates this bound. ̅𝐽 𝑛 = 𝑛 log 𝑛.

10°1 100100 101

J/J̄(n)

0.1

0.5

1

re
je

ct

l = 0.1

10°1 100100 101

J/J̄(n)

l = 1.0
PCIQ

n
256

512

1024

2048

4096

Figure 3. Rejection rate convergence with # Lanczos iterations J. Significance level is in blue and the 95% CI (for
converged results) is in green. J is rescaled on the x-axis by the upper bound derived above. The black dashed line

indicates this bound. ̅𝐽 𝑛 = 𝑛"/$ log 𝑛.

CIQ is a quadrature algorithm designed to exploit the Cauchy integral
formula to approximate functions of square matrices. The most pertinent
example in the literature can be found in [1], which derives efficient
implementations for matrix-vector products of the form 𝐴±$/%𝑢.

Since 𝐽 relies on the condition number of 𝐾 we expect a preconditioning to
improve the efficiency of the algorithm. We call this version PCIQ.

Anthony Stephenson1, Robert Allison1,2,
Edward Pyzer-Knapp3

1 University of Bristol
2 Part funded by National Cyber Security Centre (UK)
3 IBM Research

